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Abstract

The performance of web applications is of paramount importance as it can impact end-user experience and the business revenue. 
Web Performance Optimization (WPO) deals with front-end performance engineering. Web performance would impact customer 
loyalty, SEO, web search ranking, SEO, site traffic, repeat visitors and overall online revenue. In this paper we have conducted the 
survey of state of the art tools, techniques, methodologies of various aspects of web performance optimization. We have identified 
key web performance patterns and proposed novel web performance driven development framework. We have elaborated on vari-
ous techniques related to different phases of web performance driven development framework. 
Keywords: Application, Framework, Images, Traffic, Video, Web 

1. Introduction to Web Performance 
Optimization (WPO)
Pages with good performance increase revenue2,3 and improve 
the search engine ranking1. Page performance also has positive 
impact on user traffic56,57 and the download rate impacts the per-
ceived success by end users71. 

Web performance optimization (WPO) involves all methods 
to improve the performance of web page87. The key components 
used in WPO are web content, images, videos, CSS/JS files, 
XML/JSON files and such presentation components. WPO also 
involves various performance rules, techniques and processes to 
improve end to end performance optimization of the web page. 

1.1 Organization of the Paper
The paper is organized as follows. We will start with intro-
duction concepts of WPO and we will then examine various 
aspects of WPO such as impact and dimensions of WPO in the 
introduction section. In the next section we elaborate the per-
formance driven development framework. We explain each step 
in the performance driven development framework including 
performance based design, performance based development, 
performance based testing and performance monitoring. In each 
of these phases we discuss relevant performance rules, design 
principles and performance best practices. Wherever applicable, 
we will provide the Java-based web application examples

1.2 Impact of WPO
WPO has impact in following aspects:

•• Customer churn: Research indicates that customers 
would abandon the slower web pages88,91,92

•• User impact: User experience is drastically impacted 
due to page performance. The performance of landing/
gateway pages and key processes is directly co-related to 
overall user experience

Figure 1. Impact of WPO.

•• Site Traffic: Site traffic is impacted if the page takes more 
than 3 seconds89 and most users expect the page to load 
within 2 seconds89. 

•• Conversion rate increases 74% when page loads 
within 2 seconds96
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•• Page abandonment rate increases to 40%  if page takes  
> 3 seconds97

•• Nearly half the population expects the page to load 
within 2 seconds97

•• Revenue: Online revenue is directly correlated to the perfor-
mance  of key pages and transactions for ecommerce sites

•• Multi-device optimization: An optimized web page also 
impacts the performance on various devices.

•• Search engine ranking: Google includes site speed in 
search  ranking algorithm

•• Omni-Channel advantage:  A good performing page can 
also be easily access by mobile devices.

The impact of WPO on page performance is depicted in the Figure 1. 
The high level impact on three categories is depicted in Figure 2

Figure 2. Impact categories of WPO.

1.3 Dimensions of WPO
The process of Web optimization can be analyzed from several 
dimensions: 

•• Optimization of Request pipeline processing Systems: 
In this category we will examine all the systems involved 
in the web request processing pipeline. This involves 
browser software, CDN, proxy server, network, load 
balancer, web server, application server, integration mid-
dleware, backend services, database server and such

•• Client-side and server side optimization: Client-side 
performance optimization includes all optimizations 
performed on client-side presentation components such 
as HTML pages, images, assets and such. Server side opti-
mization includes performance tuning of server –side 
components such as fine-tuning business components, 
setting optimal server configuration, right infrastructure 
sizing and such

•• Design time and run time optimization: Design time 
optimization includes the static and offline perfor-
mance optimizations activities such as performance code 
reviews, performance testing, and offline performance 
tuning and such. Run time and dynamic performance 
optimization activities include real-time performance 

Table 2. Categorized Performance Rules

Category Performance Rule Impact on web performance
Request Optimization Reduce the number of HTTP Requests Reduces the consumed bandwidth and data transferred 

Merge the static assets such as JS and CSS 
files

Merging would reduce the number of HTTP requests and 
would improve the page response times by about 38%66

Remove all duplicate file includes
Remove all invalid URLs which result in 
HTTP 404

Avoids unnecessary and invalid HTTP requests

Load the JavaScript sascynhronously This would reduce the blocked loading of JS files
Minimize usage of iframes iFrames block the loading of parent window till iframe source 

is loaded and hence affects load times
Minimize redirects Minimize additional requests
Cache DNS records We can reduce the DNS lookup time through DNS cache 

maintained at browser level 
Remove any unused CSS, JS file includes Minimizes HTTP requests

Web object size 
optimization

Minify JS and CSS files Minification would reduce the size of JS and CSS file 

Compress images Compresed images would reduce overall page size
Leverage gzip for HTTP compression Compression would reduce the overall page size by about 

70%66

Remove white space in the HTML document Removal of white space would reduce the overall page size
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monitoring and notification, run time performance opti-
mization and such.

•• Web component optimization: Another aspect of web 
optimization is to optimize each of the constituent’s web 
components such as HTML, images, JavaScript, CSS, 
Rich media files and such.

2. Performance Driven Development 
Framework
Performance driven development approach can be adapted in 
following phases for ground-up development project:

•• Defining sound performance based design guidelines
•• Implementing the design guidelines during development
•• Thorough testing strategy to cover all performance sce-

narios
•• Continuous real-time monitoring

The various phases are depicted in figure 3.

2.1 Web performance Design 
In this section, we will look at the design guidelines and best 
practices for achieving optimal web performance. The books66,67 

provide excellent performance guidelines from web perfor-

HTTP Header 
Optimization

Leverage cache headers for static assets 
(images, JS, CSS, JSON and other binary 
files) using Cache-Control header with max-
age directive

Allows browsers to optimally cache the assets 

Use expires header for the assets Avoids additional resource request
Asset placement Place CSS files at the top CSS elements in the head tag

Place JS files at the bottom JS files at the bottom would improve the perceived page load 
time. I would avoid the blocked loading of other assets

Externalize inline JS or CSS Enables browser caching and parallel downloads
Image optimization Asynchronous image load Load the images on-demand and in asynchronous when they 

are visible in the user’s view port.
Optimize image size Use the right size image based on the requesting device
Convert JPEG image formats to progressive 
format

This would reduce the overall image size

Optimize image dimensions Specify the exact width and height for all images
Use image maps Reduces multiple image requests
Use CSS sprites All images are combined into a single one and the required 

image is displayed using style rules. This reduces number of 
image requests

Other techniques: inline images
Network optimization Usage of CDN CDN would optimize the resource request by serving the 

resource from nearest location to the requestor
Use multiple asset hosting servers (for 
hosting images, videos and other multi-
media content)

Allows browsers to download the content in parallel.

External Dependency 
optimization

Identify all external scripts and HTTP 
requests which impact the page performance 
and which block the page load and optimize 
them

Web Application design 
optimization

•• Perform regular and iterative performance 
testing to identify performance bottlenecks 
and fix them. Use automated and manual per-
formance code reviews at regular intervals. 
•• Use light-weight service based integration 

model and load the data asynchronously on-
demand

Iterative performance testing uncovers performance 
bottleneck during early stages
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mance stand point. Web developers and architects can use this 
as reference while developing web applications. Some of these 
optimizations are also available as filters for Apache’s mode_pag-
espeed module52.

Figure 3. Performance Driven Development framework.

As 80%66 of load time is spent in making HTTP requests for 
non-HTML content, we could look at ways to optimize these web 
components in table 2.

The key page performance design principles are listed below:
•• Light weight design

•• Include only core functionality on landing/gateway 
JSPs

•• Highly optimized/compressed marquee image and 
other media

•• SLA-based 3rd party integrations on frequently used JSPs
•• Search centered experience

•• Position highly optimized search as key tool for infor-
mation discovery 

•• Provide intuitive information architecture

•• Think Asynchronous alternatives
•• Use AJAX tags in page to optimize perceived page 
load time

•• Lazy loading data model for page components 
•• Omni-channels optimized

•• Page components for mobile devices
•• Layered architecture

•• Separation of concerns
Given below are performance anti patterns in a typical Java 

web application:
•• JSP Page size contributors

•• Media (Marquee image, flash, video)
•• JavaScript files
•• CSS
•• Uncompressed/un-optimized images

•• JSP Includes/calls
•• Numerous JS/CSS includes
•• Duplicate calls
•• Broken links
•• Unnecessary calls

•• Other common causes
•• Placement of JS/CSS calls
•• Bloated size of JSP
•• Frequent resource requests with huge payload
•• Inline styles and JS logic

Table 1. Performance Bottleneck and anti-patterns

Bottleneck Area Performance anti-patterns
Web page Design •• Heavy landing/gateway pages

•• UI design with many components and functionality 
•• Pages designed with huge images/flash files

Third-party 
components

Third-party Scripts and widgets would block page load and impact overall page 
performance.  

Network bandwidth Usage of sub-optimal network bandwidth across internal systems
Server configuration Not adopting optimal server settings for parameters such as heap memory, thread 

pool size, connection pool size etc.
Infrastructure capacity •• Usage of sub-optimal memory, CPU, disk capacity for servers

•• Not conducting load testing, stress testing, endurance testing and related perfor-
mance tests

Performance testing •• Not conducting all necessary performance tests (such as load test, stress test, 
endurance test) for web application
•• Conducting performance testing at the end of the application development
•• Not conducting Omni-channel testing to test performance on mobile platforms.

Page code •• Not conducting performance code review
•• Not performing iterative performance testing

Service calls •• Non validated frequent service calls
•• Heavy usage of synchronous service calls

Integration design •• 3rd Party component integration without proper SLA framework
Process validation •• Lack of performance testing of overall steps and/or for process/transaction
Omni channel strategy •• Absence of mobility enabled sites or lack of multi-device testing.
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2.2 Performance based Development
Performance based development is the key step in the perfor-
mance driven development framework. Firstly, in this phase we 
will identify the performance bottlenecks and performance anti 
patterns and then we will apply all the performance optimization 
rules and best practices. We will also look at content optimization 
and the impact of security on WPO. In this section we will also 
look at optimizing performance for existing web applications. 

2.2.1 Web Performance bottlenecks and Web 
Performance anti-patterns
Let us look at common performance bottlenecks and anti-pat-
terns which impact the web performance. Table 1 provides a list 
of commonly occurring performance bottleneck

2.2.2 Performance Optimization Practices
Given below are the performance optimization best practices and 
thumb rules which can be used during development stages:

Figure 4. Performance Effort matrix.

Given below are the performance optimization rules for a 
Java-based web application and these rules can be used for per-
formance code review and as a performance checklist:

•• Maximum usage of AJAX
•• Cache list items in web page
•• Properly scoped managed beans for JSF
•• Precompiled JSP
•• Optimize intervals for checking JSP and servlet modifica-

tion
•• Usage of JSP cache
•• Tune session timeouts (optimal 30 mins) and call session.

invalidate() for logout
•• Disable JSP/Servlet auto-reload
•• Heavy objects in HttpSession needs to be avoided
•• Usage of gzip compression wherever supported
•• Include the static JSP fragments like header, footer using 

include directive instead of include action
•• Wherever required pre-load servlet and cache the appli-

cation data using “load-on-startup” feature
•• Perform client side validation to avoid un-necessary 

server round trip
•• One time creation of cached data in init() method
•• Disable auto-reload feature unless required.

Figure 4 provides the performance effort matrix which pro-
vides the effort needed for implementing each of the performance 
rules and its impact on the overall page performance. 

2.2.3 Content Optimization
A web page consists of multiple content sections. The content 
would come from HTML content fragment or from web content 
stored in CMS. Let us look at ways to optimize the web content 
retrieved from CMS. 

•• While designing the content strategy think of content in 
chunks instead of a monolithic content. Modular content 
chunk will make the content reusable and enhance the 
caching optimization

Asset Category Optimization Rules Impact on page performance
Static Assets (JS, 
CSS, JSON, XML)

Merge into minimal sets
Minify the merged files
CSS at Top and JS files at bottom

Merging reduces number of HTTP requests
Minification reduces the overall page size speeding the page load
Appropriate positioning improves perceived page load
On an average 30%  page size reduction through merging and minification. 

Binary Assets 
(Image, media, 
Flash)

Use compressed format and CSS 
Sprites
Use CDN for edge side caching

Optimizes the overall page size
Improves performance on mobile devices
CDN would provide optimized performance for multi-geographies.
On an average  25%  page size reduction through usage of CSS sprites
On an average 10%  improvement in page load time through CDN caching.

Web page related Remove any duplicate/un-
necessary calls
Reduce the white spaces
Compress/g-zip HTML content

Reduces number of HTTP requests
Optimized DOM size for the end web page
On an average  20%  page size reduction through HTML compression
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•• Use adaptive technique techniques (such as progressive 
enhancement/degradation) while creating the content. This 
will automatically make the content optimal for all devices

•• Cache the content at chunk level. Fine tune the caching 
period based on the content update frequency. Perform 
on-demand chunk cache invalidation when new content 
is published.

•• Adopt user-friendly information architecture for easier 
and faster discovery of relevant content

•• Tag the content chunks with relevant metadata and tags 
that helps in accurate information discovery.

2.2.4 Security and WPO
Security is one of the key concerns for web applications. Security 
for web applications can be enforced at various levels. One of the 
most commonly used security constraint is to use secured socket 
layer (SSL) to ensure transport level security. SSL is a default 
choice for web pages hosting confidential information such as 
user credentials, user personal information and such. SSL would 
also impact the page performance78 due to additional overhead. 
The most commonly used techniques for optimizing perfor-
mance in such scenarios are as follows:

•• Set proper expiration times for the objects so that browser 
can cache the objects appropriately74

•• Use CDN which support SSL acceleration modules for 
forward caching

Figure 5. Dimensions of performance testing.

2.2.5 Performance Optimization of Existing Web 
Applications
In order to optimize the performance of the existing web applica-
tion we can follow these three-step process:

•• Apply 80-20 rule: Identify 20% of pages/processes which 
is most frequently used

•• Root cause analysis: Leverage tools to identify the com-
ponent-wise and asset-wise size and load times

•• Iterate & Monitor: Iteratively cover remaining pages and 
transactions

2.3  Web Performance Testing
Figure 5 provides the four dimensions of a performance testing. 

2.3.1 Web Testing
In this category the web application is subject to peak load and 
stress load testing. The testing would be conducted for applica-
tion distributed across various geographies and on all supported 
browsers and user devices. The industry standard for page load 
time is 2 second for HTTP and 5 seconds for HTTPS pages. The 
testing would be conducted to validate this performance SLA at 
various loads. 

2.3.2 Infrastructure Testing
Various infrastructure components such as web server, data-
base server, application server would be tested and monitored at 
various loads. Server resources such as CPU, memory would be 
monitored along with network latency and throughput during 
the testing process. 

2.3.3 Process and Transaction Testing
In this phase the key business transactions and processes are 
tested end to end. Processes like product checkout process, user 
registration process and such crucial business activities are ideal 
candidates for testing. We would explore optimization alterna-
tives such as reduction in process steps, process automation, 
removal of redundant process steps, providing one-click alterna-
tives (such as one-click checkout) in this phase. 

2.3.4 Multi Device Testing
In this phase the functionality will be tested for performance and 
user experience on various devices and browsers.

2.4 Web Performance Monitoring
The last step in performance based design is the continuous 
performance monitoring. Various steps and activities of the per-
formance monitoring process is depicted in figure 6.

Figure 6. Performance monitoring process.
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2.4.1 Performance Tracking
In this phase, we would use web analytics tools to track and mon-
itor page performance metrics such as visitor traffic, page load 
time (PLT), conversion rate, time on site, bounce rate, abandon-
ment rate and such. 

2.4.2 Real Time Monitoring Infrastructure
A monitoring infrastructure would including real time monitor-
ing software and configuration setup to check for performance 
SLAs on continuous basis. 

The performance metrics and SLAs will be tracked in real 
time and reports/notifications would be sent to site administra-
tors in case of SLA violation

2.4.3 Multi Geo Monitoring 
For a globally distributed web site a real-time monitoring would 
be done from various goes to test the performance for various 
languages and geo-specific sites. 

All the insights gathered through monitoring would be con-
verted into actions and the pro-active monitoring would be an 
essential component for high availability. 

2.4.4 Web Performance Governance
Governance is defining “What” will be governed by “Who” and 
“How”. Figure 7 provides various aspects of performance govern-
ance. Performance governance will consists of various governing 
bodies from Business, IT and Enterprise Architecture, Security 
and Infrastructure Groups

Figure 7. Performance governance.

3. Conclusion
In this paper we examined various aspects of web performance 
optimization. We proposed a novel performance driven develop-
ment framework and detailed various aspects of the framework. 
In each of the phases, we elaborated the web performance opti-
mization techniques such as asset optimization, performance 
design checklist, performance thumb rules, and performance 

best practices needed in those phases.  Finally we elaborated on 
performance governance and its various elements.
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