
Global Journal of Enterprise Information System
G J E I S

Performance Driven Development Framework for Web
Applications
K. S. Shailesh* and P. V. Suresh

SOCIS, IGNOU, Maidan Garhi, New Delhi – 110068, Delhi, India; Shaileshkumar79@yahoo.com, pvsuresh@ignou.ac.in

Abstract

The performance of web applications is of paramount importance as it can impact end-user experience and the business revenue.
Web Performance Optimization (WPO) deals with front-end performance engineering. Web performance would impact customer
loyalty, SEO, web search ranking, SEO, site traffic, repeat visitors and overall online revenue. In this paper we have conducted the
survey of state of the art tools, techniques, methodologies of various aspects of web performance optimization. We have identified
key web performance patterns and proposed novel web performance driven development framework. We have elaborated on vari-
ous techniques related to different phases of web performance driven development framework.
Keywords: Application, Framework, Images, Traffic, Video, Web

1. Introduction to Web Performance
Optimization (WPO)
Pages with good performance increase revenue2,3 and improve
the search engine ranking1. Page performance also has positive
impact on user traffic56,57 and the download rate impacts the per-
ceived success by end users71.

Web performance optimization (WPO) involves all methods
to improve the performance of web page87. The key components
used in WPO are web content, images, videos, CSS/JS files,
XML/JSON files and such presentation components. WPO also
involves various performance rules, techniques and processes to
improve end to end performance optimization of the web page.

1.1 Organization of the Paper
The paper is organized as follows. We will start with intro-
duction concepts of WPO and we will then examine various
aspects of WPO such as impact and dimensions of WPO in the
introduction section. In the next section we elaborate the per-
formance driven development framework. We explain each step
in the performance driven development framework including
performance based design, performance based development,
performance based testing and performance monitoring. In each
of these phases we discuss relevant performance rules, design
principles and performance best practices. Wherever applicable,
we will provide the Java-based web application examples

1.2 Impact of WPO
WPO has impact in following aspects:

•• Customer churn: Research indicates that customers
would abandon the slower web pages88,91,92

•• User impact: User experience is drastically impacted
due to page performance. The performance of landing/
gateway pages and key processes is directly co-related to
overall user experience

Figure 1. Impact of WPO.

•• Site Traffic: Site traffic is impacted if the page takes more
than 3 seconds89 and most users expect the page to load
within 2 seconds89.

•• Conversion rate increases 74% when page loads
within 2 seconds96

*Author for correspondence

 DOI: 10.18311/gjeis/2017/15870

Manuscript Accepted: 13-Feb-2017; Originality Check: 24-Feb-2017; Peer Reviewers Comment: 08-Mar-2017; Double
Blind Reviewers Comment: 13-Mar-2017; Author Revert: 21-Mar-2017; Camera-Ready-Copy: 28-Mar-2017)

76 Vol 9 | Issue 1 | January-March 2017 | www.informaticsjournals.com/index.php/gjeis GJEIS | Print ISSN: 0975-153X | Online ISSN: 0975-1432

Performance Driven Development Framework for Web Applications

•• Page abandonment rate increases to 40% if page takes
> 3 seconds97

•• Nearly half the population expects the page to load
within 2 seconds97

•• Revenue: Online revenue is directly correlated to the perfor-
mance of key pages and transactions for ecommerce sites

•• Multi-device optimization: An optimized web page also
impacts the performance on various devices.

•• Search engine ranking: Google includes site speed in
search ranking algorithm

•• Omni-Channel advantage: A good performing page can
also be easily access by mobile devices.

The impact of WPO on page performance is depicted in the Figure 1.
The high level impact on three categories is depicted in Figure 2

Figure 2. Impact categories of WPO.

1.3 Dimensions of WPO
The process of Web optimization can be analyzed from several
dimensions:

•• Optimization of Request pipeline processing Systems:
In this category we will examine all the systems involved
in the web request processing pipeline. This involves
browser software, CDN, proxy server, network, load
balancer, web server, application server, integration mid-
dleware, backend services, database server and such

•• Client-side and server side optimization: Client-side
performance optimization includes all optimizations
performed on client-side presentation components such
as HTML pages, images, assets and such. Server side opti-
mization includes performance tuning of server –side
components such as fine-tuning business components,
setting optimal server configuration, right infrastructure
sizing and such

•• Design time and run time optimization: Design time
optimization includes the static and offline perfor-
mance optimizations activities such as performance code
reviews, performance testing, and offline performance
tuning and such. Run time and dynamic performance
optimization activities include real-time performance

Table 2. Categorized Performance Rules

Category Performance Rule Impact on web performance
Request Optimization Reduce the number of HTTP Requests Reduces the consumed bandwidth and data transferred

Merge the static assets such as JS and CSS
files

Merging would reduce the number of HTTP requests and
would improve the page response times by about 38%66

Remove all duplicate file includes
Remove all invalid URLs which result in
HTTP 404

Avoids unnecessary and invalid HTTP requests

Load the JavaScript sascynhronously This would reduce the blocked loading of JS files
Minimize usage of iframes iFrames block the loading of parent window till iframe source

is loaded and hence affects load times
Minimize redirects Minimize additional requests
Cache DNS records We can reduce the DNS lookup time through DNS cache

maintained at browser level
Remove any unused CSS, JS file includes Minimizes HTTP requests

Web object size
optimization

Minify JS and CSS files Minification would reduce the size of JS and CSS file

Compress images Compresed images would reduce overall page size
Leverage gzip for HTTP compression Compression would reduce the overall page size by about

70%66

Remove white space in the HTML document Removal of white space would reduce the overall page size

77Vol 9 | Issue 1 | January-March 2017 | www.informaticsjournals.com/index.php/gjeis GJEIS | Print ISSN: 0975-153X | Online ISSN: 0975-1432

K. S. Shailesh and P. V. Suresh� Case Study

monitoring and notification, run time performance opti-
mization and such.

•• Web component optimization: Another aspect of web
optimization is to optimize each of the constituent’s web
components such as HTML, images, JavaScript, CSS,
Rich media files and such.

2. Performance Driven Development
Framework
Performance driven development approach can be adapted in
following phases for ground-up development project:

•• Defining sound performance based design guidelines
•• Implementing the design guidelines during development
•• Thorough testing strategy to cover all performance sce-

narios
•• Continuous real-time monitoring

The various phases are depicted in figure 3.

2.1 Web performance Design
In this section, we will look at the design guidelines and best
practices for achieving optimal web performance. The books66,67

provide excellent performance guidelines from web perfor-

HTTP Header
Optimization

Leverage cache headers for static assets
(images, JS, CSS, JSON and other binary
files) using Cache-Control header with max-
age directive

Allows browsers to optimally cache the assets

Use expires header for the assets Avoids additional resource request
Asset placement Place CSS files at the top CSS elements in the head tag

Place JS files at the bottom JS files at the bottom would improve the perceived page load
time. I would avoid the blocked loading of other assets

Externalize inline JS or CSS Enables browser caching and parallel downloads
Image optimization Asynchronous image load Load the images on-demand and in asynchronous when they

are visible in the user’s view port.
Optimize image size Use the right size image based on the requesting device
Convert JPEG image formats to progressive
format

This would reduce the overall image size

Optimize image dimensions Specify the exact width and height for all images
Use image maps Reduces multiple image requests
Use CSS sprites All images are combined into a single one and the required

image is displayed using style rules. This reduces number of
image requests

Other techniques: inline images
Network optimization Usage of CDN CDN would optimize the resource request by serving the

resource from nearest location to the requestor
Use multiple asset hosting servers (for
hosting images, videos and other multi-
media content)

Allows browsers to download the content in parallel.

External Dependency
optimization

Identify all external scripts and HTTP
requests which impact the page performance
and which block the page load and optimize
them

Web Application design
optimization

•• Perform regular and iterative performance
testing to identify performance bottlenecks
and fix them. Use automated and manual per-
formance code reviews at regular intervals.
•• Use light-weight service based integration

model and load the data asynchronously on-
demand

Iterative performance testing uncovers performance
bottleneck during early stages

78 Vol 9 | Issue 1 | January-March 2017 | www.informaticsjournals.com/index.php/gjeis GJEIS | Print ISSN: 0975-153X | Online ISSN: 0975-1432

Performance Driven Development Framework for Web Applications

mance stand point. Web developers and architects can use this
as reference while developing web applications. Some of these
optimizations are also available as filters for Apache’s mode_pag-
espeed module52.

Figure 3. Performance Driven Development framework.

As 80%66 of load time is spent in making HTTP requests for
non-HTML content, we could look at ways to optimize these web
components in table 2.

The key page performance design principles are listed below:
•• Light weight design

•• Include only core functionality on landing/gateway
JSPs

•• Highly optimized/compressed marquee image and
other media

•• SLA-based 3rd party integrations on frequently used JSPs
•• Search centered experience

•• Position highly optimized search as key tool for infor-
mation discovery

•• Provide intuitive information architecture

•• Think Asynchronous alternatives
•• Use AJAX tags in page to optimize perceived page
load time

•• Lazy loading data model for page components
•• Omni-channels optimized

•• Page components for mobile devices
•• Layered architecture

•• Separation of concerns
Given below are performance anti patterns in a typical Java

web application:
•• JSP Page size contributors

•• Media (Marquee image, flash, video)
•• JavaScript files
•• CSS
•• Uncompressed/un-optimized images

•• JSP Includes/calls
•• Numerous JS/CSS includes
•• Duplicate calls
•• Broken links
•• Unnecessary calls

•• Other common causes
•• Placement of JS/CSS calls
•• Bloated size of JSP
•• Frequent resource requests with huge payload
•• Inline styles and JS logic

Table 1. Performance Bottleneck and anti-patterns

Bottleneck Area Performance anti-patterns
Web page Design •• Heavy landing/gateway pages

•• UI design with many components and functionality
•• Pages designed with huge images/flash files

Third-party
components

Third-party Scripts and widgets would block page load and impact overall page
performance.

Network bandwidth Usage of sub-optimal network bandwidth across internal systems
Server configuration Not adopting optimal server settings for parameters such as heap memory, thread

pool size, connection pool size etc.
Infrastructure capacity •• Usage of sub-optimal memory, CPU, disk capacity for servers

•• Not conducting load testing, stress testing, endurance testing and related perfor-
mance tests

Performance testing •• Not conducting all necessary performance tests (such as load test, stress test,
endurance test) for web application
•• Conducting performance testing at the end of the application development
•• Not conducting Omni-channel testing to test performance on mobile platforms.

Page code •• Not conducting performance code review
•• Not performing iterative performance testing

Service calls •• Non validated frequent service calls
•• Heavy usage of synchronous service calls

Integration design •• 3rd Party component integration without proper SLA framework
Process validation •• Lack of performance testing of overall steps and/or for process/transaction
Omni channel strategy •• Absence of mobility enabled sites or lack of multi-device testing.

79Vol 9 | Issue 1 | January-March 2017 | www.informaticsjournals.com/index.php/gjeis GJEIS | Print ISSN: 0975-153X | Online ISSN: 0975-1432

K. S. Shailesh and P. V. Suresh� Case Study

2.2 Performance based Development
Performance based development is the key step in the perfor-
mance driven development framework. Firstly, in this phase we
will identify the performance bottlenecks and performance anti
patterns and then we will apply all the performance optimization
rules and best practices. We will also look at content optimization
and the impact of security on WPO. In this section we will also
look at optimizing performance for existing web applications.

2.2.1 Web Performance bottlenecks and Web
Performance anti-patterns
Let us look at common performance bottlenecks and anti-pat-
terns which impact the web performance. Table 1 provides a list
of commonly occurring performance bottleneck

2.2.2 Performance Optimization Practices
Given below are the performance optimization best practices and
thumb rules which can be used during development stages:

Figure 4. Performance Effort matrix.

Given below are the performance optimization rules for a
Java-based web application and these rules can be used for per-
formance code review and as a performance checklist:

•• Maximum usage of AJAX
•• Cache list items in web page
•• Properly scoped managed beans for JSF
•• Precompiled JSP
•• Optimize intervals for checking JSP and servlet modifica-

tion
•• Usage of JSP cache
•• Tune session timeouts (optimal 30 mins) and call session.

invalidate() for logout
•• Disable JSP/Servlet auto-reload
•• Heavy objects in HttpSession needs to be avoided
•• Usage of gzip compression wherever supported
•• Include the static JSP fragments like header, footer using

include directive instead of include action
•• Wherever required pre-load servlet and cache the appli-

cation data using “load-on-startup” feature
•• Perform client side validation to avoid un-necessary

server round trip
•• One time creation of cached data in init() method
•• Disable auto-reload feature unless required.

Figure 4 provides the performance effort matrix which pro-
vides the effort needed for implementing each of the performance
rules and its impact on the overall page performance.

2.2.3 Content Optimization
A web page consists of multiple content sections. The content
would come from HTML content fragment or from web content
stored in CMS. Let us look at ways to optimize the web content
retrieved from CMS.

•• While designing the content strategy think of content in
chunks instead of a monolithic content. Modular content
chunk will make the content reusable and enhance the
caching optimization

Asset Category Optimization Rules Impact on page performance
Static Assets (JS,
CSS, JSON, XML)

Merge into minimal sets
Minify the merged files
CSS at Top and JS files at bottom

Merging reduces number of HTTP requests
Minification reduces the overall page size speeding the page load
Appropriate positioning improves perceived page load
On an average 30% page size reduction through merging and minification.

Binary Assets
(Image, media,
Flash)

Use compressed format and CSS
Sprites
Use CDN for edge side caching

Optimizes the overall page size
Improves performance on mobile devices
CDN would provide optimized performance for multi-geographies.
On an average 25% page size reduction through usage of CSS sprites
On an average 10% improvement in page load time through CDN caching.

Web page related Remove any duplicate/un-
necessary calls
Reduce the white spaces
Compress/g-zip HTML content

Reduces number of HTTP requests
Optimized DOM size for the end web page
On an average 20% page size reduction through HTML compression

80 Vol 9 | Issue 1 | January-March 2017 | www.informaticsjournals.com/index.php/gjeis GJEIS | Print ISSN: 0975-153X | Online ISSN: 0975-1432

Performance Driven Development Framework for Web Applications

•• Use adaptive technique techniques (such as progressive
enhancement/degradation) while creating the content. This
will automatically make the content optimal for all devices

•• Cache the content at chunk level. Fine tune the caching
period based on the content update frequency. Perform
on-demand chunk cache invalidation when new content
is published.

•• Adopt user-friendly information architecture for easier
and faster discovery of relevant content

•• Tag the content chunks with relevant metadata and tags
that helps in accurate information discovery.

2.2.4 Security and WPO
Security is one of the key concerns for web applications. Security
for web applications can be enforced at various levels. One of the
most commonly used security constraint is to use secured socket
layer (SSL) to ensure transport level security. SSL is a default
choice for web pages hosting confidential information such as
user credentials, user personal information and such. SSL would
also impact the page performance78 due to additional overhead.
The most commonly used techniques for optimizing perfor-
mance in such scenarios are as follows:

•• Set proper expiration times for the objects so that browser
can cache the objects appropriately74

•• Use CDN which support SSL acceleration modules for
forward caching

Figure 5. Dimensions of performance testing.

2.2.5 Performance Optimization of Existing Web
Applications
In order to optimize the performance of the existing web applica-
tion we can follow these three-step process:

•• Apply 80-20 rule: Identify 20% of pages/processes which
is most frequently used

•• Root cause analysis: Leverage tools to identify the com-
ponent-wise and asset-wise size and load times

•• Iterate & Monitor: Iteratively cover remaining pages and
transactions

2.3 Web Performance Testing
Figure 5 provides the four dimensions of a performance testing.

2.3.1 Web Testing
In this category the web application is subject to peak load and
stress load testing. The testing would be conducted for applica-
tion distributed across various geographies and on all supported
browsers and user devices. The industry standard for page load
time is 2 second for HTTP and 5 seconds for HTTPS pages. The
testing would be conducted to validate this performance SLA at
various loads.

2.3.2 Infrastructure Testing
Various infrastructure components such as web server, data-
base server, application server would be tested and monitored at
various loads. Server resources such as CPU, memory would be
monitored along with network latency and throughput during
the testing process.

2.3.3 Process and Transaction Testing
In this phase the key business transactions and processes are
tested end to end. Processes like product checkout process, user
registration process and such crucial business activities are ideal
candidates for testing. We would explore optimization alterna-
tives such as reduction in process steps, process automation,
removal of redundant process steps, providing one-click alterna-
tives (such as one-click checkout) in this phase.

2.3.4 Multi Device Testing
In this phase the functionality will be tested for performance and
user experience on various devices and browsers.

2.4 Web Performance Monitoring
The last step in performance based design is the continuous
performance monitoring. Various steps and activities of the per-
formance monitoring process is depicted in figure 6.

Figure 6. Performance monitoring process.

81Vol 9 | Issue 1 | January-March 2017 | www.informaticsjournals.com/index.php/gjeis GJEIS | Print ISSN: 0975-153X | Online ISSN: 0975-1432

K. S. Shailesh and P. V. Suresh� Case Study

2.4.1 Performance Tracking
In this phase, we would use web analytics tools to track and mon-
itor page performance metrics such as visitor traffic, page load
time (PLT), conversion rate, time on site, bounce rate, abandon-
ment rate and such.

2.4.2 Real Time Monitoring Infrastructure
A monitoring infrastructure would including real time monitor-
ing software and configuration setup to check for performance
SLAs on continuous basis.

The performance metrics and SLAs will be tracked in real
time and reports/notifications would be sent to site administra-
tors in case of SLA violation

2.4.3 Multi Geo Monitoring
For a globally distributed web site a real-time monitoring would
be done from various goes to test the performance for various
languages and geo-specific sites.

All the insights gathered through monitoring would be con-
verted into actions and the pro-active monitoring would be an
essential component for high availability.

2.4.4 Web Performance Governance
Governance is defining “What” will be governed by “Who” and
“How”. Figure 7 provides various aspects of performance govern-
ance. Performance governance will consists of various governing
bodies from Business, IT and Enterprise Architecture, Security
and Infrastructure Groups

Figure 7. Performance governance.

3. Conclusion
In this paper we examined various aspects of web performance
optimization. We proposed a novel performance driven develop-
ment framework and detailed various aspects of the framework.
In each of the phases, we elaborated the web performance opti-
mization techniques such as asset optimization, performance
design checklist, performance thumb rules, and performance

best practices needed in those phases. Finally we elaborated on
performance governance and its various elements.

4. References
1.	 Google. Using site speed in web search ranking. Available from:

http://googlewebmastercentral.blogspot.com/2010/04/using-site-
speed-in-web-search-ranking.html. 2010 Apr 9.

2.	 Galletta DF, Henry R, McCoy S, Polak P. Web Site Delays: How
Tolerant are Users? Journal of the Association for Information
Systems. 2004; 5(1).

3.	 Shopzilla: faster page load time = 12% revenue increase. Available
from: http://www.strangeloopnetworks.com/ resources/
infographics/web-performanceand-ecommerce/shopzilla-faster-
pages-12-revenue-increase/

4.	 Wang J. A survey of web caching schemes for the Internet.
SIGCOMM Comput Commun Rev. 1999 Oct; 29(5):36–46.

5.	 Chankhunthod A, Danzig PB, Neerdaels C, Schwartz MF, Worrel
KJ. A hierarchical Internet object cache, Usenix’96. 1996 Jan.

6.	 Wang Z. Cachemesh: a distributed cache system for World
WideWeb, Web Cache Workshop. 1997.

7.	 Fan L, Cao P, Almeida J, Broder AZ. Summary cache: a scalable
wide-area Web cache sharing protocol, Proceedings of Sigcomm’98.

8.	 Michel S, Nguyen K, Rosenstein A, Zhang L, Floyd S, Jacobson
V. Adaptive Web caching: towards a new caching architecture,
Computer Network and ISDN Systems. 1998 Nov.

9.	 Yang J, Wang W, Muntz R, Wang J. Access driven Web caching,
UCLA Technical Report #990007

10.	 Cunha CR, Jaccoud CFB. Determining WWW user’s next access and
its application to pre-fetching. Proceedings of ISCC’97: The second
IEEE Symposium on Computers and Communications. 1997 Jul.

11.	 Cohen E, Krishnamurthy B, Rexford J. Improving end-to-end
performance of the Web using server volumes and proxy _fillters.
Proceedings of Sigcomm’98

12.	 Markatos EP, Chronaki CE. A TOP-10 approach to prefetching on
Web. Proceedings of INET’98.

13.	 Palpanas T, Mendelzon A. Web prefetching using partial match pre-
diction. Proceedings of WCW’99.

14.	 Cohen E, Krishnamurthy B, Rexford J. Efficient algorithms for pre-
dicting requests to Webservers. Proceedings of Infocom’99

15.	 Levy-Abegnoli E, Iyengar A, Song J, Dias D. Design and perfor-
mance of Web server accelerator. Proceedings of Infocom’99.

16.	 Challenger J, Iyengar A, Witting K, Ferstat C, Reed P. A Publishing
System for Efficiently Creating Dynamic Web Content. Proceedings
of IEEE INFOCOM 2000. 2000 Mar.

17.	 Verma DC. Content Distribution Networks: An Engineering
Approach. John Wiley & Sons. 2002.

18.	 Iyengar A, Nahum EM, Shaikh A, Tewari R. Enhancing Web
Performance. In Proceedings of the IFIP 17th World Computer
Congress - TC6 Stream on Communication Systems: The State of the
Art. In: Lyman C, Kluwer BV Editors. Deventer, The Netherlands,
The Netherlands. 2002; 95–126.

19.	 Killelea P. Web Performance Tuning: speeding up the web. O’Reilly
Media, Inc. 2002.

82 Vol 9 | Issue 1 | January-March 2017 | www.informaticsjournals.com/index.php/gjeis GJEIS | Print ISSN: 0975-153X | Online ISSN: 0975-1432

Performance Driven Development Framework for Web Applications

20.	 Available from: http://httpd.apache.org/docs/current/misc/perf-
tuning.html

21.	 Cardellini V, Colajanni M, Yu PS. Dynamic load balancing on scal-
able Web-server systems. Yorktown Heights, NY: IBM T.J. Watson
Research Center. 1998.

22.	 Acharjee U. Personalized and Artificial Intelligence Web Caching
and Prefetching. Master thesis, University of Ottawa,Canada. 2006.

23.	 Huang YF, Hsu JM. Mining web logs to improve hit ratios of prefetch-
ing and caching. Knowledge-Based Systems. 2008; 21(1):62–9.

24.	 Pallis G, Vakali A, Pokorny J. A clustering-based prefetching
scheme on a Web cache environment. Computers and Electrical
Engineering. 2008; 34(4):309–23.

25.	 Wong AKY. Web Cache Replacement Policies: A Pragmatic
Approach. IEEE Network Magazine. 2006; 20(1):28–34.

26.	 Chen HT. Pre-fetching and Re-fetching in Web caching systems:
Algorithms and Simulation, Master Thesis, Trent University,
Peterborough, Ontario, Canada. 2008.

27.	 Chen T. Obtaining the optimal cache document replacement pol-
icy for the caching system of an EC Website. European Journal of
Operational Research. Amsterdam. 2007; 181(2):828.

28.	 Kumar C, Norris JB. A new approach for a proxy-level Web caching
mechanism. Decision Support Systems, Elsevier. 2008; 46(1):52–60.

29.	 Kumar C. Performance evaluation for implementations of a network
of proxy caches. Decision Support Systems. 2009; 46(2):492–500.

30.	 Domenech J, Gil JA, Sahuquillo J, Pont A. Using current web page
structure to improve prefetching performance. Computer Network
Journal. 2010; 54(9):1404–17.

31.	 Padmanabhan VN, Mogul JC. Using predictive prefetching to
improve World Wide Web latency. Computer Communication
Review. 1996; 26(3):22–36.

32.	 Cobb J, ElAarag H. Web proxy cache replacement scheme based on
back-propagation neural network. Journal of System and Software.
2008; 81(9):1539–58.

33.	 Ali W, Shamsuddin SM. Intelligent Client-side Web Caching Scheme
Based on Least recently Used Algorithm and Neuro-Fuzzy System.
The sixth International Symposium on Neural Networks(ISNN
2009), Lecture Notes in Computer Science (LNCS), Springer-Verlag
Berlin Heidelberg. 2009; 5552:70–9.

34.	 ElAarag H, Romano S. Improvement of the neural network
proxy cache replacement strategy. Proceedings of the 2009 Spring
Simulation Multi Conference, (SSM’09), San Diego, California.
2009. p. 90.

35.	 Sulaiman S, Shamsuddin SM, Forkan F, Abraham A. Intelligent
web caching using neuro computing and particle swarm optimiza-
tion algorithm. Proceedings of the 2008 Second Asia International
Conference on Modelling and Simulation (AMS 08), IEEE
Computer Society. 2008. p. 642–7.

36.	 Tian W, Choi B, Phoha VV. An Adaptive Web Cache Access Predictor
Using Neural Network. Proceedings of the 15th International
Conference on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems: Developments in Applied Artificial
Intelligence, Lecture Notes In Computer Science(LNCS), Springer-
Verlag London, UK. 2002; 2358:450–9.

37.	 Markatos EP, Chronaki CE. A Top-10 approach to prefetching
on the Web. Proceedings of INET’98 Geneva, Switzerland. 1998;
276–90.

38.	 Jiang Y, Wu MY, Shu W. Web prefetching: Costs, benefits and per-
formance. Proceedings of the 11th International World Wide Web
Conference, New York, ACM. 2002.

39.	 Tang N, Vemuri R. An artificial immune system approach to docu-
ment clustering. Proceedings of the Twentieth ACM Symposium
on Applied Computing. SantaFe, New Mexico, USA. 2005; 918–22.

40.	 Ali W, Shamsuddin S, Ismail A. A survey of web caching and
prefetching. Int J Adv Soft Comput Appl. 2011; 3(1):18–44.

41.	 Liu M, Wang F, Zeng D, Yang L. An Overview of world wide
Web Caching. International Conference on Systems Man and
Cybernetics, IEEE. 2001. p. 3045–50.

42.	 Barish G, Obraczka K. World Wide Web Caching: Trends and
Techniques. 2000.

43.	 Pons Alexander P. Improving the performance of client web object
retrieval. Journal of Systems and Software. 2005; 74(3).

44.	 Shi L, Han Y-J, Ding XG, Wei L. An SPN based Integrated Model
for Web Prefetching and Caching. Springer Journal of Computer
Science and Technology. 2006; 21(4).

45.	 Hussai S, McLeod RD. Intelligent Prefetching at a Proxy Server.
Proceedings IEEE Conference on Electrical and Computer
Engineering, Cananda.

46.	 Hung Y, Chen ALP. Prediction of Web Page Accesses by Proxy
Server Log. ACM Journal of World Wide Web. 2002; 5(1).

47.	 Xu C-Z, Ibrahim TI. Towards Semantics-Based Prefetching to
Reduce Web Access Latency. Proceedings IEEE Computer Society
Symposium, SAINT’03, U.S.A.

48.	 Xu C-Z, Ibrahim TI. Semantics-Based Personalized Prefetching
to Improve Web performance. Proceedings IEEE Conference on
Distributed Computing System, U.S.A.

49.	 Kirchner H, Krummenacher R, Edwards D, Rissel T. A Location-
aware Prefetching Mechanism. Project work at Distributed
Information Systems Laboratory LSIR. 2004.

50.	 Agababov V, Buettner M, Chudnovsky V, Cogan M, Greenstein B,
McDaniel S, Piatek M, Scott C, Welsh M, Yin B. Flywheel: Google’s
Data Compression Proxy for the Mobile Web. In Proceedings of
NSDI. 2015.

51.	 The Chromium Projects. SPDY. Available from: https://www.chro-
mium.org/spdy, 2015.

52.	 mod pagespeed. Available from: http://www.modpagespeed.com/
53.	 Zhou W, Li Q, Caesar M, Godfrey B. ASAP: A Low Latency Transport

Layer. In Proc of the International Conference on Emerging
Networking Experiments and Technologies (CoNEXT). 2011.

54.	 TCP pre-connect. Available from: http://www.igvita.
com/2012/06/04/chrome-networking-dns-prefetch-and-tcppre-
connect/

55.	 Radhakrishnan S, Cheng Y, Chu J, Jain A, Raghavan B. TCP
Fast Open. In Proc of the International Conference on Emerging
Networking EXperiments and Technologies (CoNEXT). 2011.

56.	 Lohr S. For Impatient Web Users, an Eye Blink Is Just Too Long to
Wait. Available from: http://www.nytimes.com/2012/03/01/technol-
ogy/ impatient-web-users-flee-slow-loading-sites.html, 2012 Mar.

83Vol 9 | Issue 1 | January-March 2017 | www.informaticsjournals.com/index.php/gjeis GJEIS | Print ISSN: 0975-153X | Online ISSN: 0975-1432

K. S. Shailesh and P. V. Suresh� Case Study

57.	 Souders S. Velocity and the bottom line. Available from: http://radar.
oreilly.com/2009/07/velocity-making-your-site-fast.html, 2009 Jul.

58.	 Netravali R, Mickens J, Balakrishnan H. Polaris: faster page
loads using fine-grained dependency tracking. In 13th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 16). 2016.

59.	 Datta A, Dutta K, Fishman D, Ramamritham K, Thomas H,
VanderMeer D. A Comparative Study of Alternative Middle Tier
Caching Solutions to Support Dynamic Web Content Acceleration.
In Proceedings of 27th International Conference on Very Large
Data Bases (VLDB). 2001 Sep.

60.	 Datta A, Dutta K, Ramamritham K, Thomas HM, Vander Meer
DE. Dynamic Content Acceleration: A Caching Solution to Enable
Scalable Dynamic Web Page Generation. In Proceedings of ACM
SIGMOD International Conference on Management of Data
(SIGMOD). 2001 May.

61.	 Iyengar A, Challenger J. Improving Web Server Performance by
Caching Dynamic Data. In Proceedings of Usenix Symposium on
Internet Technologies and Systems. 1997 Dec.

62.	 Zukerman I, Albercht D, Nicholson A. Predicting Users’ Requests
on WWW. In Proceedings of 7th International Conference on User
Modeling. 1999 Jun.

63.	 Zhu H, Yang T. Cachuma: Class-based Cache Management for
Dynamic Web Content. Technical Report TRCS00-13, Dept of
Computer Science, The University of California at Santa Barbara.
2000 Jun.

64.	 Su Z, Yang Q, Lu Y, Zhang H. What Next: A Prediction System
for Web Requests using N-gram Sequence Models. In Proceedings
of 1st International Conference on Web Information System and
Engineering. 2000 Jun.

65.	 Wang Z, Crowcroft J. Prefetching in World Wide Web. In
Proceedings of IEEE Global Telecommunications Internet Mini-
Conference. 1996 Nov.

66.	 Souders S. High performance web sites: Essential knowledge for
frontend engineers. Farnham: O’Reilly. 2007.

67.	 Souders S. Even faster web sites. Sebastopol: O’Reilly. 2009.
68.	 Sundaresan S, Magharei N, Feamster N, Teixeira R. Characterizing

and Mitigating Web Performance Bottlenecks in Broadband Access
Networks. 2013.

69.	 Cohen E, Kaplan H. Proactive caching of DNS records: Addressing
a performance bottleneck. In Symposium on Applications and the
Internet (SAINT). 2001; 85–94.

70.	 Feldmann A, Caceres R, Douglis F, Glass G, Rabinovich M.
Performance of web proxy caching in heterogeneous bandwidth
environments. In Proc IEEE INFOCOM, New York, NY. 1999 Mar.

71.	 Palmer JW. Web site usability, design, and performance metrics.
Information Systems Research. 2002; 13(2):151–67.

72.	 Yagoub K, Florescu D, Issarny V, Valduriez P. Caching strategies
for data intensive Web sites. Proceedings of the 26th International
Conference on Very Large Data Bases. 2000 May.

73.	 Podlipnig S, Boszormenyi L. A survey of web cache replacement
strategies. ACM Computing Surveys (CSUR). 2003; 35(4):374–98.

74.	 Iyengar A, Rosu D. Architecting Web sites for high performance. Sci
Program. 2002 Jan; 10(1):75–89.

75.	 Adali S, Candan KS, Papakonstantinou Y, Subrahmanian VS. Query
caching and optimization in distributed mediator systems. In ACM
SIGMOD Record. ACM. Chicago. 1996 Jun; 25(2):137–46.	

76.	 Challenger J, Iyengar A, Witting K, Ferstat C, Reed P. A Publishing
System for Efficiently Creating Dynamic web Content Proceedings
of IEEE INFOCOM. 2000.

77.	 Challenger J, Iyengar A, Dantzig P. A Scalable System for
Consistently Caching Dynamic Web Data. Proceedings of IEEE
INFOCOM’99

78.	 Apostolopoulos G, Peris V, Saha D. Transport Layer Security: How
much does it really cost? Proceedings of IEEE INFOCOM. 1999.

79.	 Vakali A, Pallis G. Content delivery networks: Status and trends.
Internet Computing, IEEE. 2003; 7(6):68–74.

80.	 Ravi J, Yu Z, Shi W. A survey on dynamic Web content genera-
tion and delivery techniques. Journal of Network and Computer
Applications. 2009; 32(5):943–60.

81.	 Sivasubramanian S, Pierre G, van Steen M, Alonso G. Analysis
of caching and replication strategies for Web applications. IEEE
Internet Comput. 2007; 11(1):60–6.

82.	 Yagoub K, Florescu D, Issarny V, Valduriez P. Caching strategies
for data intensive Web sites. Proceedings of the 26th International
Conference on Very Large Data Bases. 2000 May.

83.	 Fortino G, Mastroianni C. Special section: enhancing content net-
works with P2P, grid and agent technologies. Future Gener Comp
Syst. 2008; 24(3):177–9

84.	 Candan KS, Li WS, Luo Q, Hsiung WP, Agrawal D. Enabling
dynamic content caching for database-driven web sites. In ACM
SIGMOD Record, ACM. 2001 May; 30(2):532–43.

85.	 Best Practices for Speeding up Your Web Site: Available from: http://
developer.yahoo.com/performance/rules.html

86.	 Ravi J, Yu Z, Shi W. A survey on dynamic Web content genera-
tion and delivery techniques. J Netw Comput Appl. 3 2009 Sep;
2(5):943–60.

87.	 Web performance optimization: Available from: http://en.wikipedia.
org/wiki/Web_performance_optimization

88.	 For Impatient Web Users, an Eye Blink Is Just Too Long to Wait:
Available from: http://www.nytimes.com/2012/03/01/technology/
impatient-web-users-flee-slow-loading-sites.html?_r=2

89.	 Akamai Report: Available from: http://www.akamai.com/html/
about/press/releases/2009/press_091409.html

90.	 Rempel G. Defining Standards for Web Page Performance in Business
Applications. Proceedings of the 6th ACM/SPEC International
Conference on Performance Engineering - ICPE ‘15. 2015.

91.	 Galletta DF, Henry R, McCoy S, Polak P. Web Site Delays: How
Tolerant are Users? Journal of the Association for Information
Systems. 2004; 5(1):1.

92.	 Hoxmeier JA, DiCesare C. System response time and user satis-
faction: an experimental study of browser based applications.
Proceedings of the Americas Conference on Information Systems,
Association for Information Systems, Long Beach, CA, USA. 2000.
p. 140–5.

93.	 Google Page Speed Insights and Rules: Available from: https://
developers.google.com/speed/docs/insights/rules

84 Vol 9 | Issue 1 | January-March 2017 | www.informaticsjournals.com/index.php/gjeis GJEIS | Print ISSN: 0975-153X | Online ISSN: 0975-1432

Performance Driven Development Framework for Web Applications

Citation:
K. S. Shailesh and P. V. Suresh

“Performance Driven Development Framework for Web Applications”,
 Global Journal of Enterprise Information System. Volume-9, Issue-1, January-March, 2017. (http://informaticsjournals.com/index.php/gjeis)

Conflict of Interest:
Author of a Paper had no conflict neither financially nor academically.

94.	 Kambhampaty S, Modali VS, Bertoli M, Casale G, Serazzi G.
Performance Modeling for Web based J2EE and .NET Applications.
In Proc of world Academy of Science, Engineering and Technology.
2005 Oct; 8.

95.	 Barker T. High performance responsive design: Building faster sites
across devices (1st ed). O’Reilly Media. 2014.

96.	 Available from: http://www.compuware.com/application-perfor-
mance-management/performance-index-faq.html

97.	 Available from: http://www.akamai.com/html/about/press/
releases/2009/press_091409.html

