
A Finite State Automaton is a Tool to
Represent Formal Language

Paper Nomenclature: View Point (VP)

Paper Code: GJEISV15I1JM2023VP2

Submission at Portal (www.gjeis.com): 13-Jan-2023

Manuscript Acknowledged: 15-Jan-2023

Originality Check: 24-Jan-2023

Originality Test (Plag) Ratio (Ouriginal): 07%

Author Revert with Rectified Copy: 27-Jan-2023

Peer Reviewers Comment (Open): 31-Jan-2023

Single Blind Reviewers Explanation: 12-Feb-2023

Double Blind Reviewers Interpretation: 20-Feb-2023

Triple Blind Reviewers Annotations: 27- Feb-2023

Author Update (w.r.t. correction, suggestion
& observation): 28-Feb-2023

Camera-Ready-Copy: 14-Mar-2023

Editorial Board Excerpt & Citation: 19-Mar-2023

Published Online First: 31-Mar-2023

 Article History

ENTERPRISE INFORMATION SYSTEM

 Abstract
Purpose: In an introductory formal languages course, upper-level undergraduates
and first-year graduate , students are introduced to concepts like automata theory,
grammar, constructive proofs, computational efficiency, and decidability. These
subjects are difficult or daunting for many students learning to code since they are on
the periphery of the field of Computer Science. This misconception is understandable
since students are often tasked with designing and providing accurate machines and
grammar without the experimental opportunities and real-time feedback crucial to
their development as learners. The purpose of the present research work is that tools for
creating computations should be included in the instruction of computation theory.

Design/Methodology/ Approach: The present study is mainly based on secondary
data. The data and relevant statistics for this study have been collected from different
sources.

Findings: It details the deployment and usage in the classroom of a library called FSM,
which is meant to provide students with the chance to explore and test their ideas using
state machines, grammar rules, and query language. Before committing to a rigorous
demonstration of correctness, students can conduct randomized tests.

Originality/ Value: This research shows students may conduct usability tests on their
ideas like that used in computer programming classes. Students may quickly include
their algorithmic developments in their constructive proofs thanks to the library’s
convenient implementation options.

Paper type: View Point.

www.gjeis.com

•	 Present Volume & Issue (Cycle): Volume 15 | Issue-1 | Jan-Mar 2023
•	 International Standard Serial Number:
Online ISSN: 0975-1432 | Print ISSN: 0975-153X

•	 DOI (Crossref, USA) https://doi.org/10.18311/gjeis/2023
•	 Bibliographic database: OCLC Number (WorldCat): 988732114
•	 Impact Factor: 3.57 (2019-2020) & 1.0 (2020-2021) [CiteFactor]
•	 Editor-in-Chief: Dr. Subodh Kesharwani
•	 Frequency: Quarterly

•	 Published Since: 2009
•	 Research database: EBSCO https://www.ebsco.com
•	 Review Pedagogy: Single Blind Review/ Double Blind Review/ Triple
Blind Review/ Open Review

•	 Copyright: ©2023 GJEIS and it’s heirs
•	 Publishers: Scholastic Seed Inc. and KARAM Society
•	 Place: New Delhi, India.
•	 Repository (figshare): 704442/13

GJEIS

ISSN (Online) : 0975-1432
ISSN (Print) : 0975-153X
DOI: 10.18311/gjeis

Volume 15 | Issue 1 | January-March 2023

Dr. Subodh Kesharwani
Editor-in-Chief

Publishers

www.gjeis.com

ENTERPRISE INFORMATION SYSTEM

Since 2009 in Academic & Research

 Keywords: Finite State Automaton  |  Formal Language  |  Automata Theory

GJEIS is an Open access journal which access article under the Creative Commons. This CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0) promotes access and re-use of scientific and scholarly research and publishing.

*Corresponding Author (Bhawna Et. Al)

– Bhawna Kaushik*
Assistant professor, G.L.Bajaj Institute of Management

 kaushikbhawna311@gmail.com https://orcid.org/0000-0003-3688-5341

– Mayank Saini
Assistant professor, G.L.Bajaj Institute of Management

 sainimayank0211@gmail.com https://orcid.org/0000-0002-3820-4485

Global Journal of Enterprise Information System

Vol 15 | Issue 1 | Jan-Mar 2023 Online ISSN : 0975-1432  |  Print ISSN : 0975-153X94

A Finite State Automaton is a Tool to Represent Formal Language

Introduction
Automata, mathematical models of classical computing, have been a significant part of theoretical computer science [1]. It

all began with a landmark work by Kleene, and in only a few short years, this area of mathematics has grown into a vibrant field
of study. Finite automata have always been fundamental to the study of computer science. They are so popular because they
capture something essential, as seen by the many distinct ways the family of rational languages described by finite automata
has been characterized. The relationship between finite automata and associated applications in computer science is a great
illustration of how theory and practice may fruitfully interact. Programming language theory, compiler building, switching
circuit design, computer controller, neural network, text editor, and lexical analyzer all owe much to finite automata.

Models and analyses are used in studying computers and computing in theoretical computer science. It involves various
subfields of computing to create models and analytical techniques.

The field of automata theory investigates abstract machines used for computing. In the 1930s, before computers were
widely available, A. Turing researched an abstract machine that, in terms of what it could calculate, had all the powers of
modern computers. The purpose of Turing’s work was to provide a clear description of the limits of what can and cannot be
done by computing machines; his results hold not just for his abstract Turing machines but also for the practical computers in
use today.

Researchers in the 1940s and 1950s focused on simpler machines, which we now term “finite automata.” These automata
were first proposed as a model for brain activity, but they have also been useful in various other contexts. For example, they
have been implemented in tools for designing and verifying the behaviour of digital circuits, creating lexical analyzers, scanning
large bodies of text, and validating systems of various kinds with finite states. Aside from this, linguist N. Chomsky also started
looking at formal “grammar” in the late ‘50s. These grammars constitute the foundation for some crucial parts of today’s
software and have tight ties with abstract automata.

These theoretical advancements mentioned above have clear, practical implications for modern computer scientists. Certain
ideas, such as finite automata and certain types of formal grammar, are employed in the development of crucial pieces of
software.

In this introductory chapter, we first quickly review the fundamental ideas of automata theory before moving on to the
fuzzy sets and the three main extensions to those sets that are necessary for our investigation.

The Central Concepts of Automata Theory
We begin by discussing the core concepts and terminology used throughout automata theory. Among these ideas are the

alphabet, threads, and languages.

Definition: An alphabet is a collection of symbols that is not empty. Common alphabets for it are indicated by the symbol,
and they are as follows:

1. The symbol represents binary 0 and 1.

2. ∑ = a, b, c,... z, the set of all lowercase letters.

3. All ASCII characters or all readable ASCII characters.

Definition: A string (also known as a word) is a series of characters, usually of fixed length and drawn from a common
alphabet. Binary strings like 011 and 011011 are used as examples. A string’s size equals the total number of symbol places it
contains.

The length of 011 is 3, for instance. A chord length is often written as |w|. For instance,

|011-11| = 6.

Definition: e, for “empty,” is a specific case of string in which no symbols appear. The length of e is defined to be zero. Any
letters in the alphabet may be used for this string.

DOI: 10.18311/gjeis/2023 Vol 15 | Issue 1 | Jan-Mar 2023 95

www.gjeis.com
View Point

Bhawna Kaushik and Mayank Saini

The standard notation for collecting all strings in an alphabet is ∑ *. I’ll give you an example:

We would prefer not to include an empty string in some situations. The symbol ∑+ represents the set of all lines that are
not empty.

As a result, two equivalents are as follows:

∑

Definition: In this example, we’ll use two strings x and y. Then the string generated by duplicating x and appending a copy
of y is referred to as xy, or the connectives of x and y.

Example: Consider the expressions x = 0111 and y = 011011. After that, both xy and yx equal 0110110111. For each w, the
ratios ew = we = w hold. That is, e is the identifier for concatenation.

Definition 1.2.5: A collection of strings drawn from the same pool. ∑*, where ∑ languages are defined by their alphabets.
If ∑ is an alphabet, and * ∑ ⊆L, Thus, L is a language beyond. Remember that a language that exceeds does not have to include
cords that contain all the components of ∑. The collection of binary integers whose value would be a prime: 10, 11, 101, 111,...,
is an abstract example.

All alphabets have a fixed number of letters. Hence there is only one serious limitation on what may be considered a
language. Even though there is theoretically an endless number of strings possible in a language, in practice, languages are
limited to just the letters of a finite alphabet.

Finite State Automata
In this part, we’ll go through what a finite automaton is, how its types are related to one another, what a regular language is,

and how to minimize a finite automaton. The philosophy of computer languages and the development of compilers relied heavily
on finite automata. The behavior of Discrete Event Systems may be modeled using robots (DES). Like systems are commonly
found in manufacturing, database transaction management, telephony or computer networks, and therapeutic systems like
patient monitoring. Applications of finite machine learning may be found in computing science, mathematics, and algebra. In an
online search, finite automata are used for knowledge discovery from the text to identify a predefined keyword list.

Definition: Mathematically, a finite state animal is a pattern with limited input and output.

An FSA may be characterized analytically as a 5-tuple.

Global Journal of Enterprise Information System

Vol 15 | Issue 1 | Jan-Mar 2023 Online ISSN : 0975-1432  |  Print ISSN : 0975-153X96

An expanded transition function is required to provide the concept of an automaton’s language with high precision. That’s
the operation that accepts a string as input (represented by w) and returns the same state (represented by q). The symbol for this
is

NOTE: The output of a memoryless automaton has no other influence than the input. A robot with finite memory is one in
which the result relies on the state in extra to the information. A Moore machinery’s outputs are independent of any input other
than the machine’s current state. A Mush machine is a kind of automata in which the result at any given time is contingent on
both the current state and the input.

Figure 1.1: Transition diagram for a DFA

Table 1.1 displays the transformation table associated with the program. In this case, a circle represents the agreeing states,
but also an arrow represents the initial state.

Table 1.1: Transition table of Figure 1.1

That is, the array of characters w that route to a passage from the initial state q0 to one of the terminal (accepting) phases
is the languages of A1 (in terms of the transition diagram, it is the set of all labels along all the paths that lead from the starting
state to any accepting state).

Definition: A “5-tuple” is an example of a nondeterministic discrete automaton (NDFA).

A Finite State Automaton is a Tool to Represent Formal Language

DOI: 10.18311/gjeis/2023 Vol 15 | Issue 1 | Jan-Mar 2023 97

www.gjeis.com

Keep in mind that an NDFA and a DFA are otherwise identical, with the main distinction being in the number of states
involved (in the former instance, there are many states involved, while in the latter case, there is only one).

Example

Figure1: Transition diagram for NDFA

Formally, the NDFA shown in Figure may be outlined as where motivated strategies
are defined by the table.

Table: Transition table of Figure 1.2

An NDFA’s transitioning function may be specified in the same way as a DFA’s, through transition tables. There is one key
distinction: even if an NDFA set consists of a single entity, each item in the table represents a set. Additionally, the correct entry
seems to be the empty set, , if the supplied input symbol does not have a movement from a given state. All states with arrows
and the circles represent the initial and final states, respectively.

L (A2) denotes the language of an NDFA A2, and the following is a definition of that language:

View Point
Bhawna Kaushik and Mayank Saini

Global Journal of Enterprise Information System

Vol 15 | Issue 1 | Jan-Mar 2023 Online ISSN : 0975-1432  |  Print ISSN : 0975-153X98

Equivalence of DFA & NDFA
Surprisingly, any language represented by some NDFA may also be expressed by some DFA, despite the number of

countries that a NDFA is simpler to design than a DFA. In addition, the DFA often contains more transitions than the NDFA
but approximately the same number of stages. While the greatest NDFA for a given language has exactly n states, the cheapest
DFA may have 2n states. The built DFA enters a state that corresponds to array of states of NDFA after scanning the input
signal sequence w. That’s because the sets which include @ at least one allowing state of both the NDFA are also acceptable
states of the DFA, we may deduce that it DFA and NDFA allow its same strings and, by extension, the same language.

The theorems that follow establish the above statement.

Theorem 1.2: To the extent that a given language L is recognized by at least one Nationally Recognized Foreign
Acknowledgement Authority (NDFA) [5], L is recognized by at least one DFA.

Formal Languages and Finite Automata
There are several uses for formal language theory in the field of Computer Science. In the early 1950s, linguists tried to

define legitimate sentences accurately and describe their structural components. To establish a formal grammar, they sought
to provide a rigors mathematical description of the laws of grammar. They reasoned that providing a detailed description of
natural languages (languages like English, Hindi, etc.) would facilitate automatic machine translation. In 1956, it was Noam
Chomsky [5] who first presented a formalized model of a grammar. Despite its apparent lack of use in expressing natural
languages like English, it proved effective for characterizing computer languages.

Classification of Languages
We have, grammar’s formal definition, where VN and represent sets of symbols such that S VN. In terms

of the content of their outputs, Noam Chomsky categorized grammars into four broad categories (type 0 to type 3).

Before we get into the various forms of manufacturing, we need to define one thing.

Definition: In a play of this kind, , , where A is a variable,, the left context,, the right “context, and, the
replacement string.

Example:

a) In lmABlmn ,→lmAlmn lm is the left context, lmn is the right context, and AB .= α

b) In ε A , A and →AC are the left and right contexts respectively, and .ε = α Here the production erases C.

c) In ε→A , the left and right contexts are ε , and ε= α . The production erases A in any context.

Definition: A production without any restrictions is called type 0 productions and a type 0 grammar is a phrase structure
grammar having type 0 productions.

Definition: A production of the form 〉〈 〉A is called type 1 if ∑ ≠ 〈 (here erasing of A is not allowed).

For example, AC → AcCb is a type 1 production".

When all of a grammar's outputs are 1s, it is said to be 1st-type, or frame of reference, and the language created by such a
grammar is 1st-type, or context-sensitive (Lcsl).

Definition: “A type 2 production is of the form, where A → 〈)

(here L.H.S. has no left or right context).

For example, bB→ ab, A →S are type 2 productions.

A grammar is said to be of type 2 or context free, if it contains only type 2 productions, and a language is called a type 2 or
context free language (Lcfl) if it is generated by type 2 grammar.

Definition: A production of the form VN∈ aA,where A,B→ b,B →B ∑∈,a,b is called a type 3 production".

A Finite State Automaton is a Tool to Represent Formal Language

DOI: 10.18311/gjeis/2023 Vol 15 | Issue 1 | Jan-Mar 2023 99

www.gjeis.com

Type 3 or regular grammars create only other type 3 or regular products (here S is allowed, but in this instance S does
not occur on the right-hand side of any other production), while Lrl languages are those that can only be formed by type 3
grammars.

Topics in Regular Expressions and Finite Automata To algebraically represent subsets of strings, tools like regular expressions
come in handy. Those are the languages that finite state machines can understand (regular languages). Regular expressions over
an alphabet are defined recursively as.

1. Regular expressions include any symbol at the end of a string (i.e., an element of), as well as the operators. and.

2. It is also a regular expression for two regular expressions, R1 and R2, to be joined together. Its notation is R1 + R2.

3. It is also a regular expression to concatenate two regular expressions, such as R1 and R2. Its symbolic representation is
R1R2.

4. Regular expression R's closure or iteration, R*, is likewise a regular expression.

5. If R is a regular expression, then the order of evaluation of R is also a regular expression, denoted by (R).

6. Applying the aforementioned principles once or several times yields exact regular expressions over 6, which may then be
used in a recursive fashion to create further regular expressions.

The following theorems describe the relationship between finite robots and regular expressions, as well as between reverse
- engineering and regular expressions.

Theorem: The pattern R is registered by the transition system if and only if there is a route from the initial state to the end
state with value w.

Theorem: A regular expression may be used to describe any set L that can be processed by a finite automaton M.

NOTE:

i.	 First, each regular expression may have an equivalent finite automaton, and any finite automata can have a regular
expression.

ii.	 If two finite automata accept the same set of strings, we say that they are equivalent.

iii.	 If P and Q are regular expressions over, then they are comparable if and only if they represent the same set. Equalities
between P and Q hold if and only if the respective finite automata are equivalent.

iv.	 The class of regular sets over is shown to be equivalent to the class of regular languages over. Further, we may build a finite
automaton A accepting L whose: a. States correspond to variables if and only if G is a regular grammar producing the
regular language L(G).

v.	 A0 is the starting point. b.

vi.	 P’s productions are reflected in the transitions. c.

Pumping lemma is a theorem that proves that an input string must satisfy the criterion of being a regular set. Because of
this theorem, we can “pump” several different input strings from a single string.

Conclusion
The FSM library equips users with the tools they need to create and test out state machines, grammatical structures, and

conditionals. It lends credence to the idea that creating a constructive proof is the best way to establish the reality of a machine
or language. Therefore, the method presented in the proof is one that can be realized using FSM. Teachers and students may
now use digital tools in addition to traditional paper and pencil sketches to gain competence and identify flaws in a design. They
may, instead, use FSM testing infrastructure to build tests with real-time feedback. Students may then build and create unit
tests for their constructive algorithms, which not only reinforces their Computer Science education but also encourages active
reasoning and the study of formal languages. There has been encouraging reaction from students, and the examples included
in the piece came from the library. Our hope is that CS departments everywhere will embrace our method of combining
instruction in the theory of computing with hands-on experience in building computational models.

In the future, we want to add additional constructors to the library, especially those that help with state reduction. We
want to enhance the library by adding a user-friendly graphical user interface. We do not want students to use a graphical
interface like those described in the linked work to build their own machines and grammars. Instead, we want students to
keep up the practise of writing code in order to build machines and grammars, which can then be presented graphically in

View Point
Bhawna Kaushik and Mayank Saini

Global Journal of Enterprise Information System

Vol 15 | Issue 1 | Jan-Mar 2023 Online ISSN : 0975-1432  |  Print ISSN : 0975-153X100

order to animate execution and visualize their structure. Also, regular expressions and Turing machine extensions will have
better support. Although the later machines can’t do much more computing than a regular Turing Machine, they may simplify
the implementation of certain designs, which is useful for classroom use. Finally, we want to transform the library into an
embedded DSL (like Racket’s hygienic macros [4]) that can be used in the classroom and where the proofs can be automatically
verified by a computer (e.g., using tools like DrACuLa [2] and Coq [8]).

References:-
Aho A. V. and Ullman J. D., “Foundations of Computer Science,” Computer Science Press, New York, 1994. [5]. Hopcroft J. E. and •	
Ullman J. D., “Introduction to Automata Theory, Languages, and Computation,” Addison-Wesley, 1979.

Zadeh L. A., “Fuzzy sets,” Inform. And Control, vol. 8, pp. 338-353, 1965. •	

Hersh H. M. and Caramazza A., “A fuzzy set approach to modifiers and vagueness in natural language,” J. Exp. Psychol., vol. 105, pp. •	
254-276, 1976.

Klir G. J. and Yuan B., “Fuzzy Sets and Fuzzy Logic-Theory and Applications,” Prentice Hall, Englewood Cliffs, NJ, 1995. •	

Zimmerman H. J., “Fuzzy set theory and its Applications,” Kluwer Academic Publishers, 1996. •	

Dubois D., Ostasiewicz W. and Prade H., “Fuzzy sets: history and basic notions,” in: D. Dubois, H. Prade (Eds.), “Fundamentals of •	
Fuzzy Sets,” The Handbooks of Fuzzy Sets Series, Kluwer, Dordrecht, pp. 21–124, 2000.

Zadeh L. A., “Toward a generalized theory of uncertainty (GTU)–an outline,” Information Sciences, vol. 172, no. 1, pp. 1–40, 2005. •	

Walker C. L. and Walker E. A., “The algebra of fuzzy truth values,” Fuzzy Sets and Systems vol. 149, pp. 309–347, 2005•	

Novak V., “Are fuzzy sets a reasonable tool for modelling vague phenomena?,” Fuzzy Sets and Systems, vol. 156, pp. 341–348, 2005. •	

Tong R. M. and Bonissone P. P., “A linguistic approach to decision making with fuzzy sets,” IEEE Trans on Syst., Man, Cybern. SMC-9, •	
pp. 716-723, 1980.

Ding X, Wang Z, Rovetta A, et al. Locomotion analysis of hexapod robot. In: Miripour-Fard B (ed.) Climbing and walking robots. •	
IntechOpen, 2010, pp. 291–309.

Tedeschi F and Carbone G. Design issues for hexapod walking robots. Robotics 2014; 3(2): 181–206. •	

 Zielinska T, Goh T and Chong CK. Design of autonomous hexapod. In: Proceedings of the first workshop on robot motion and control •	
(RoMoCo), Kiekrz, Poland, 29 June 1999, pp. 65–69. New York: IEEE.

Saranli U, Buehler M and Koditschek DE. Design, modeling and preliminary control of a compliant hexapod robot. In: Proceedings of •	
2000 IEEE international conference on robotics and automation (ed BS Carlisle), San Francisco, CA, 24–28 April 2000, pp. 2589–2596.
New York: IEEE.

Simpson J, Jacobsen CL and Jadud MC. Mobile Robot Control – The Subsumption Architecture and occam-pi. In: Welch P, Kerridge •	
J and Barnes F (eds) Communicating process architectures. Amsterdam: IOS Press, 2006, pp. 225–236. 6. Li M, Yi X, Wang Y, et al.
Subsumption model implemented on ROS for mobile robots. In: 2016 Annual IEEE systems conference (SysCon) (ed B Rassa), Orlando,
FL, 18–21 April 2016, pp. 1–6. New York: IEEE.

Submission Date Submission Id Word Count Character Count

24-Jan-2023 (Turnitin) 3512 21408

Analyzed Document Submitter email Submitted by Similarity

4.2 VP2_Bhawna
_GJEIS Jan to Mar

2023.docx

kaushikbhawna311@gmail.com Bhawna Kaushik 07%

Annexure 15.11

GJEIS Prevent Plagiarism in Publication
The Editorial Board had used the Turnitin – a Swedish anti-plagiarism software tool which is a fully-automatic machine learning text-
recognition system made for detecting, preventing and handling plagiarism and trusted by thousands of institutions across worldwide.
Ouriginal by Turnitin is an award-winning software that helps detect and prevent plagiarism regardless of language. Combining text-
matching with writing-style analysis to promote academic integrity and prevent plagiarism, Ouriginal is simple, reliable and easy
to use. Ouriginal was acquired by Turnitin in 2021. As part of a larger global organization GJEIS and Turnitin better equipped to
anticipate the foster an environment of academic integrity for educators and students around the globe. Ouriginal is GDPR compliant
with privacy by design and an uptime of 99.9% and have trust to be the partner in academic integrity (https://www.ouriginal.com/)
tool to check the originality and further affixed the similarity index which is {07%} in this case (See below Annexure-I). Thus, the
reviewers and editors are of view to find it suitable to publish in this Volume-15, Issue-1, Jan-Mar 2023.

A Finite State Automaton is a Tool to Represent Formal Language

DOI: 10.18311/gjeis/2023 Vol 15 | Issue 1 | Jan-Mar 2023 101

www.gjeis.com

7%
SIMILARITY INDEX

6%
INTERNET SOURCES

1%
PUBLICATIONS

0%
STUDENT PAPERS

1 3%

2 1%

3 1%

4 1%

5 <1%

6 <1%

7 <1%

8 <1%

9 <1%

on_a_tool_to_represent_formal_language_RESEARCH_PAPER…
ORIGINALITY REPORT

PRIMARY SOURCES

archive.org
Internet Source

ir.amu.ac.in
Internet Source

www.jiit.ac.in
Internet Source

Lecture Notes in Computer Science, 2006.
Publication

www.careerage.com
Internet Source

ipfs.io
Internet Source

epdf.tips
Internet Source

edoc.pub
Internet Source

lib.unisayogya.ac.id
Internet Source

7%
SIMILARITY INDEX

6%
INTERNET SOURCES

1%
PUBLICATIONS

0%
STUDENT PAPERS

1 3%

2 1%

3 1%

4 1%

5 <1%

6 <1%

7 <1%

8 <1%

9 <1%

on_a_tool_to_represent_formal_language_RESEARCH_PAPER…
ORIGINALITY REPORT

PRIMARY SOURCES

archive.org
Internet Source

ir.amu.ac.in
Internet Source

www.jiit.ac.in
Internet Source

Lecture Notes in Computer Science, 2006.
Publication

www.careerage.com
Internet Source

ipfs.io
Internet Source

epdf.tips
Internet Source

edoc.pub
Internet Source

lib.unisayogya.ac.id
Internet Source

Reviewers
Memorandum

Reviewer’s Comment 1: The paper titled “A Finite State Automaton
is a Tool to Represent Formal Language” is a well-written and
informative piece on the use of finite state automata in formal
language representation. The author presents a clear and concise
explanation of the key concepts and techniques involved in the design
and implementation of these automata, making it accessible even to
those with limited prior knowledge of the subject.

Reviewer’s Comment 2: One of the strengths of this paper is the
depth of knowledge demonstrated by the author. It is evident that
they have a strong understanding of the subject matter and are able to
explain complex ideas in a clear and concise manner. This expertise
is further demonstrated by the way the author connects finite state
automata to other concepts in computer science.

Reviewer’s Comment 3: The important aspect of this paper is its
attention to detail. The author provides a thorough explanation of
the underlying principles and theories of finite state automata, as
well as a step-by-step guide to constructing and testing these models.
This level of detail is especially helpful for readers who are new to
the field, as it provides a solid foundation for further exploration and
experimentation.

Bhawna Kaushik and Mayank Saini
“A Finite State Automaton is a Tool to

Represent Formal Language”
Volume-15, Issue-1, Jan-Mar 2023. (www.gjeis.com)

https://doi.org/10.18311/gjeis/2022
Volume-15, Issue-1, Jan-Mar 2023

Online iSSN : 0975-1432, Print iSSN : 0975-153X
Frequency : Quarterly, Published Since : 2009

Google Citations: Since 2009
H-Index = 96

i10-Index: 964

Source: https://scholar.google.co.in/citations?
user=S47TtNkAAAAJ&hl=en

Conflict of Interest: Author of a Paper
had no conflict neither financially nor academically.

Citation

 Disclaimer
All views expressed in this paper are my/our own. Some of the content is taken from open-source websites & some are copyright free for the
purpose of disseminating knowledge. Those some we/I had mentioned above in the references section and acknowledged/cited as when and
where required. The author/s have cited their joint own work mostly, and tables/data from other referenced sources in this particular paper
with the narrative & endorsement have been presented within quotes and reference at the bottom of the article accordingly & appropriately.
Finally, some of the contents are taken or overlapped from open-source websites for knowledge purposes. Those some of i/we had mentioned
above in the references section. On the other hand, opinions expressed in this paper are those of the author and do not reflect the views of the
GJEIS. The authors have made every effort to ensure that the information in this paper is correct, any remaining errors and deficiencies are
solely their responsibility.

 Acknowledgement
The acknowledgment section is an essential part of all academic research papers. It provides appropriate recognition to all contributors for their
hard work and effort taken while writing a paper. The data presented and analyzed in this paper by (Bhawna and Mayank) were collected first
handily and wherever it has been taken the proper acknowledgment and endorsement depicts. The authors are highly indebted to others who
facilitated accomplishing the research. Last but not least, endorse all reviewers and editors of GJEIS in publishing in the present issue.

 Editorial
 Excerpt

The article has 7% of plagiarism which is the accepted percentage as per the norms and standards of the journal for publication. As per the
editorial board’s observations and blind reviewers’ remarks the paper had some minor revisions which were communicated on a timely basis
to the authors (Bhawna and Mayank), and accordingly, all the corrections had been incorporated as and when directed and required to do
so. The comments related to this manuscript are noticeably related to the theme “A Finite State Automaton is a Tool to Represent Formal
Language” both subject-wise and research-wise. This paper is well-researched and well-written that provides valuable insights into the use
of finite state automata in representing formal languages. It is a must-read for anyone interested in this topic or working in related fields.
The paper’s clarity, depth of knowledge, and relevance to real-world applications make it a valuable contribution to the field of computer
science. After comprehensive reviews and the editorial board’s remarks, the manuscript has been categorized and decided to publish under the
“viewpoint” category.

(c) GJEIS 2023

View Point
Bhawna Kaushik and Mayank Saini

