
A Finite State Automaton is a Tool to  
Represent Formal Language

Paper Nomenclature: View Point (VP)

Paper Code: GJEISV15I1JM2023VP2

Submission at Portal (www.gjeis.com): 13-Jan-2023

Manuscript Acknowledged: 15-Jan-2023

Originality Check: 24-Jan-2023

Originality Test (Plag) Ratio (Ouriginal): 07%

Author Revert with Rectified Copy: 27-Jan-2023

Peer Reviewers Comment (Open): 31-Jan-2023

Single Blind Reviewers Explanation: 12-Feb-2023

Double Blind Reviewers Interpretation: 20-Feb-2023

Triple Blind Reviewers Annotations: 27- Feb-2023

Author Update (w.r.t. correction, suggestion  
& observation): 28-Feb-2023

Camera-Ready-Copy: 14-Mar-2023

Editorial Board Excerpt & Citation: 19-Mar-2023

Published Online First: 31-Mar-2023 

 ARTICLE HISTORy 

ENTERPRISE INFORMATION SYSTEM

 ABSTRACT 
Purpose: In an introductory formal languages course, upper-level undergraduates 
and first-year graduate , students are introduced to concepts like automata theory, 
grammar, constructive proofs, computational efficiency, and decidability. These 
subjects are difficult or daunting for many students learning to code since they are on 
the periphery of  the field of  Computer Science. This misconception is understandable 
since students are often tasked with designing and providing accurate machines and 
grammar without the experimental opportunities and real-time feedback crucial to 
their development as learners. The purpose of  the present research work is that tools for 
creating computations should be included in the instruction of  computation theory. 

Design/Methodology/ Approach: The present study is mainly based on secondary 
data. The data and relevant statistics for this study have been collected from different 
sources. 

Findings: It details the deployment and usage in the classroom of  a library called FSM, 
which is meant to provide students with the chance to explore and test their ideas using 
state machines, grammar rules, and query language. Before committing to a rigorous 
demonstration of  correctness, students can conduct randomized tests. 

Originality/ Value:  This research shows students may conduct usability tests on their 
ideas like that used in computer programming classes. Students may quickly include 
their algorithmic developments in their constructive proofs thanks to the library’s 
convenient implementation options. 

Paper type: View Point.

www.gjeis.com

•	 Present	Volume	&	Issue	(Cycle):	Volume	15	|	Issue-1	|	Jan-Mar	2023
•	 International	Standard	Serial	Number:	 
Online	ISSN:	0975-1432	|	Print	ISSN:	0975-153X

•	 DOI	(Crossref,	USA)	https://doi.org/10.18311/gjeis/2023
•	 Bibliographic	database:	OCLC	Number	(WorldCat):	988732114
•	 Impact	Factor:	3.57	(2019-2020)		&	1.0	(2020-2021)	[CiteFactor]
•	 Editor-in-Chief:	Dr.	Subodh	Kesharwani	
•	 Frequency:	Quarterly

•	 Published	Since:	2009	
•	 Research	database:	EBSCO	https://www.ebsco.com
•	 Review	Pedagogy:	Single	Blind	Review/	Double	Blind	Review/	Triple	
Blind	Review/	Open	Review

•	 Copyright:	©2023	GJEIS	and	it’s	heirs
•	 Publishers:	Scholastic	Seed	Inc.	and	KARAM	Society
•	 Place:	New	Delhi,	India.	
•	 Repository	(figshare):	704442/13

GJEIS

ISSN (Online) : 0975-1432
ISSN (Print)    : 0975-153X
DOI: 10.18311/gjeis

Volume 15  |  Issue 1  |  January-March 2023

Dr. Subodh Kesharwani
Editor-in-Chief

Publishers

www.gjeis.com

ENTERPRISE INFORMATION SYSTEM

Since 2009 in Academic & Research

  KEywORDS:  Finite State Automaton | Formal Language | Automata Theory  

GJEIS	is	an	Open	access	journal	which	access	article	under	the	Creative	Commons.	This	CC	BY-NC-ND	license	 
(http://creativecommons.org/licenses/by-nc-nd/4.0)	promotes	access	and	re-use	of 	scientific	and	scholarly	research	and	publishing.

*Corresponding Author (Bhawna Et. Al)

– Bhawna Kaushik*  
Assistant professor, G.L.Bajaj Institute of  Management   

 kaushikbhawna311@gmail.com      https://orcid.org/0000-0003-3688-5341 

– Mayank Saini 
Assistant professor, G.L.Bajaj Institute of  Management   

 sainimayank0211@gmail.com      https://orcid.org/0000-0002-3820-4485



Global Journal of Enterprise Information System

Vol 15  |  Issue 1  |  Jan-Mar 2023 Online ISSN : 0975-1432 | Print ISSN : 0975-153X94

A Finite State Automaton is a Tool to Represent Formal Language

Introduction
Automata,	mathematical	models	of 	classical	computing,	have	been	a	significant	part	of 	theoretical	computer	science	[1].	It	

all	began	with	a	landmark	work	by	Kleene,	and	in	only	a	few	short	years,	this	area	of 	mathematics	has	grown	into	a	vibrant	field	
of  study. Finite automata have always been fundamental to the study of  computer science. They are so popular because they 
capture something essential, as seen by the many distinct ways the family of  rational languages described by finite automata 
has been characterized. The relationship between finite automata and associated applications in computer science is a great 
illustration of  how theory and practice may fruitfully interact. Programming language theory, compiler building, switching 
circuit design, computer controller, neural network, text editor, and lexical analyzer all owe much to finite automata.

Models and analyses are used in studying computers and computing in theoretical computer science. It involves various 
subfields of  computing to create models and analytical techniques.

The field of  automata theory investigates abstract machines used for computing. In the 1930s, before computers were 
widely	available,	A.	Turing	researched	an	abstract	machine	that,	 in	 terms	of 	what	 it	could	calculate,	had	all	 the	powers	of 	
modern computers. The purpose of  Turing’s work was to provide a clear description of  the limits of  what can and cannot be 
done by computing machines; his results hold not just for his abstract Turing machines but also for the practical computers in 
use today.

Researchers	in	the	1940s	and	1950s	focused	on	simpler	machines,	which	we	now	term	“finite	automata.”	These	automata	
were first proposed as a model for brain activity, but they have also been useful in various other contexts. For example, they 
have been implemented in tools for designing and verifying the behaviour of  digital circuits, creating lexical analyzers, scanning 
large	bodies	of 	text,	and	validating	systems	of 	various	kinds	with	finite	states.	Aside	from	this,	linguist	N.	Chomsky	also	started	
looking	at	 formal	“grammar”	 in	 the	 late	 ‘50s.	These	grammars	constitute	 the	 foundation	 for	 some	crucial	parts	of 	 today’s	
software and have tight ties with abstract automata.

These theoretical advancements mentioned above have clear, practical implications for modern computer scientists. Certain 
ideas, such as finite automata and certain types of  formal grammar, are employed in the development of  crucial pieces of  
software.

In this introductory chapter, we first quickly review the fundamental ideas of  automata theory before moving on to the 
fuzzy sets and the three main extensions to those sets that are necessary for our investigation.

The Central Concepts of Automata Theory
We	begin	by	discussing	the	core	concepts	and	terminology	used	throughout	automata	theory.	Among	these	ideas	are	the	

alphabet, threads, and languages.

Definition: An	alphabet	is	a	collection	of 	symbols	that	is	not	empty.	Common	alphabets	for	it	are	indicated	by	the	symbol,	
and they are as follows:

1. The symbol represents binary 0 and 1.

2.	∑		=	a,	b,	c,...	z,	the	set	of 	all	lowercase	letters.

3.	All	ASCII	characters	or	all	readable	ASCII	characters.

Definition: A	string	(also	known	as	a	word)	is	a	series	of 	characters,	usually	of 	fixed	length	and	drawn	from	a	common	
alphabet.	Binary	strings	like	011	and	011011	are	used	as	examples.	A	string’s	size	equals	the	total	number	of 	symbol	places	it	
contains.

The	length	of 	011	is	3,	for	instance.	A	chord	length	is	often	written	as	|w|.	For	instance,

|011-11|	=	6.

Definition: e,	for	“empty,”	is	a	specific	case	of 	string	in	which	no	symbols	appear.	The	length	of 	e	is	defined	to	be	zero.	Any	
letters in the alphabet may be used for this string.



DOI: 10.18311/gjeis/2023 Vol 15  |  Issue 1  |  Jan-Mar 2023 95

www.gjeis.com
View Point

Bhawna Kaushik and Mayank Saini 

The	standard	notation	for	collecting	all	strings	in	an	alphabet	is	∑	*.	I’ll	give	you	an	example:

We	would	prefer	not	to	include	an	empty	string	in	some	situations.	The	symbol	∑+ represents the set of  all lines that are 
not empty.

As	a	result,	two	equivalents	are	as	follows:

 
∑ 

Definition: In this example, we’ll use two strings x and y. Then the string generated by duplicating x and appending a copy 
of  y is referred to as xy, or the connectives of  x and y.

Example: Consider	the	expressions	x	=	0111	and	y	=	011011.	After	that,	both	xy	and	yx	equal	0110110111.	For	each	w,	the	
ratios	ew	=	we	=	w	hold.	That	is,	e	is	the	identifier	for	concatenation.

Definition 1.2.5:	A	collection	of 	strings	drawn	from	the	same	pool.	∑*,	where	∑ languages are defined by their alphabets. 
If  ∑	is	an	alphabet,	and	*	∑ ⊆L,	Thus,	L	is	a	language	beyond.	Remember	that	a	language	that	exceeds	does	not	have	to	include	
cords that contain all the components of  ∑. The collection of  binary integers whose value would be a prime: 10, 11, 101, 111,..., 
is an abstract example.

All	alphabets	have	a	 fixed	number	of 	 letters.	Hence	 there	 is	only	one	 serious	 limitation	on	what	may	be	 considered	a	
language. Even though there is theoretically an endless number of  strings possible in a language, in practice, languages are 
limited to just the letters of  a finite alphabet.

Finite State Automata
In this part, we’ll go through what a finite automaton is, how its types are related to one another, what a regular language is, 

and how to minimize a finite automaton. The philosophy of  computer languages and the development of  compilers relied heavily 
on	finite	automata.	The	behavior	of 	Discrete	Event	Systems	may	be	modeled	using	robots	(DES).	Like	systems	are	commonly	
found in manufacturing, database transaction management, telephony or computer networks, and therapeutic systems like 
patient	monitoring.	Applications	of 	finite	machine	learning	may	be	found	in	computing	science,	mathematics,	and	algebra.	In	an	
online search, finite automata are used for knowledge discovery from the text to identify a predefined keyword list.

Definition: Mathematically, a finite state animal is a pattern with limited input and output.

An	FSA	may	be	characterized	analytically	as	a	5-tuple.



Global Journal of Enterprise Information System

Vol 15  |  Issue 1  |  Jan-Mar 2023 Online ISSN : 0975-1432 | Print ISSN : 0975-153X96

An	expanded	transition	function	is	required	to	provide	the	concept	of 	an	automaton’s	language	with	high	precision.	That’s	
the operation that accepts a string as input (represented by w) and returns the same state (represented by q). The symbol for this 
is 

NOTE:	The	output	of 	a	memoryless	automaton	has	no	other	influence	than	the	input.	A	robot	with	finite	memory	is	one	in	
which	the	result	relies	on	the	state	in	extra	to	the	information.	A	Moore	machinery’s	outputs	are	independent	of 	any	input	other	
than	the	machine’s	current	state.	A	Mush	machine	is	a	kind	of 	automata	in	which	the	result	at	any	given	time	is	contingent	on	
both the current state and the input.

Figure 1.1: Transition	diagram	for	a	DFA

Table 1.1 displays the transformation table associated with the program. In this case, a circle represents the agreeing states, 
but also an arrow represents the initial state.

Table 1.1: Transition table of Figure 1.1

That is, the array of  characters w that route to a passage from the initial state q0 to one of  the terminal (accepting) phases 
is	the	languages	of 	A1	(in	terms	of 	the	transition	diagram,	it	is	the	set	of 	all	labels	along	all	the	paths	that	lead	from	the	starting	
state to any accepting state).

Definition: A	“5-tuple”	is	an	example	of 	a	nondeterministic	discrete	automaton	(NDFA).

A Finite State Automaton is a Tool to Represent Formal Language



DOI: 10.18311/gjeis/2023 Vol 15  |  Issue 1  |  Jan-Mar 2023 97

www.gjeis.com

Keep	in	mind	that	an	NDFA	and	a	DFA	are	otherwise	identical,	with	the	main	distinction	being	in	the	number	of 	states	
involved (in the former instance, there are many states involved, while in the latter case, there is only one).

Example 

Figure1: Transition	diagram	for	NDFA

Formally,	the	NDFA	shown	in	Figure	may	be	outlined	as	  where motivated strategies 
are defined by the table.

Table: Transition table of Figure 1.2

An	NDFA’s	transitioning	function	may	be	specified	in	the	same	way	as	a	DFA’s,	through	transition	tables.	There	is	one	key	
distinction:	even	if 	an	NDFA	set	consists	of 	a	single	entity,	each	item	in	the	table	represents	a	set.	Additionally,	the	correct	entry	
seems	to	be	the	empty	set,	,	if 	the	supplied	input	symbol	does	not	have	a	movement	from	a	given	state.	All	states	with	arrows	
and the circles represent the initial and final states, respectively.

L	(A2)	denotes	the	language	of 	an	NDFA	A2,	and	the	following	is	a	definition	of 	that	language:

View Point
Bhawna Kaushik and Mayank Saini 



Global Journal of Enterprise Information System

Vol 15  |  Issue 1  |  Jan-Mar 2023 Online ISSN : 0975-1432 | Print ISSN : 0975-153X98

Equivalence of DFA & NDFA
Surprisingly,	 any	 language	 represented	 by	 some	NDFA	may	 also	 be	 expressed	 by	 some	DFA,	 despite	 the	 number	 of 	

countries	that	a	NDFA	is	simpler	to	design	than	a	DFA.	In	addition,	the	DFA	often	contains	more	transitions	than	the	NDFA	
but	approximately	the	same	number	of 	stages.	While	the	greatest	NDFA	for	a	given	language	has	exactly	n	states,	the	cheapest	
DFA	may	have	2n	states.	The	built	DFA	enters	a	state	that	corresponds	to	array	of 	states	of 	NDFA	after	scanning	the	input	
signal	sequence	w.	That’s	because	the	sets	which	include	@	at	least	one	allowing	state	of 	both	the	NDFA	are	also	acceptable	
states	of 	the	DFA,	we	may	deduce	that	it	DFA	and	NDFA	allow	its	same	strings	and,	by	extension,	the	same	language.

The theorems that follow establish the above statement.

Theorem 1.2: To	 the	 extent	 that	 a	 given	 language	 L	 is	 recognized	 by	 at	 least	 one	 Nationally	 Recognized	 Foreign	
Acknowledgement	Authority	(NDFA)	[5],	L	is	recognized	by	at	least	one	DFA.

Formal Languages and Finite Automata
There are several uses for formal language theory in the field of  Computer Science. In the early 1950s, linguists tried to 

define legitimate sentences accurately and describe their structural components. To establish a formal grammar, they sought 
to provide a rigors mathematical description of  the laws of  grammar. They reasoned that providing a detailed description of  
natural	languages	(languages	like	English,	Hindi,	etc.)	would	facilitate	automatic	machine	translation.	In	1956,	it	was	Noam	
Chomsky	[5]	who	first	presented	a	 formalized	model	of 	a	grammar.	Despite	 its	apparent	 lack	of 	use	 in	expressing	natural	
languages like English, it proved effective for characterizing computer languages.

Classification of Languages
We	have,	 	grammar’s	formal	definition,	where	VN	and	represent	sets	of 	symbols	such	that	S	VN.	In	terms	

of 	the	content	of 	their	outputs,	Noam	Chomsky	categorized	grammars	into	four	broad	categories	(type	0	to	type	3).

Before we get into the various forms of  manufacturing, we need to define one thing.

Definition: In a play of  this kind, ,	 ,	where	A	 is	 a	 variable,,	 the	 left	 context,,	 the	 right	 “context,	 and,	 the	
replacement string.

Example: 

a)	In		lmABlmn	,→lmAlmn		lm	is	the	left	context,	lmn	is	the	right	context,	and		AB	.=	α 

b) In ε	A	,	A	and	→AC		are	the	left	and	right	contexts	respectively,	and		.ε	=	α	Here	the	production	erases	C.	

c) In ε→A		,	the	left	and	right	contexts	are	ε , and ε=	α	.	The	production	erases	A	in	any	context.

Definition: A	production	without	any	restrictions	is	called	type 0 productions and a type 0 grammar is a phrase structure 
grammar having type 0 productions.

Definition:	A	production	of 	the	form	〉〈  〉A is called type 1 if  ∑ ≠ 〈	(here	erasing	of 	A	is	not	allowed).

For	example,		AC		→	AcCb	is	a	type	1	production".	

When	all	of 	a	grammar's	outputs	are	1s,	it	is	said	to	be	1st-type,	or	frame	of 	reference,	and	the	language	created	by	such	a	
grammar	is	1st-type,	or	context-sensitive	(	Lcsl	).

Definition:	“A	type	2	production	is	of 	the	form,	where	A	→ 〈)

(here	L.H.S.	has	no	left	or	right	context).	

For example, bB→	ab,	A	→S  are type 2 productions.

A	grammar	is	said	to	be	of 	type	2	or	context	free,	if 	it	contains	only	type	2	productions,	and	a	language	is	called	a	type	2	or	
context	free	language	(	Lcfl	)	if 	it	is	generated	by	type	2	grammar.	

Definition:	A	production	of 	the	form	VN∈	aA,where	A,B→ b,B →B  ∑∈,a,b	is	called	a	type	3	production".	

A Finite State Automaton is a Tool to Represent Formal Language



DOI: 10.18311/gjeis/2023 Vol 15  |  Issue 1  |  Jan-Mar 2023 99

www.gjeis.com

Type 3 or regular grammars create only other type 3 or regular products (here S is allowed, but in this instance S does 
not	occur	on	the	right-hand	side	of 	any	other	production),	while	Lrl	languages	are	those	that	can	only	be	formed	by	type	3	
grammars.

Topics	in	Regular	Expressions	and	Finite	Automata	To	algebraically	represent	subsets	of 	strings,	tools	like	regular	expressions	
come	in	handy.	Those	are	the	languages	that	finite	state	machines	can	understand	(regular	languages).	Regular	expressions	over	
an alphabet are defined recursively as.

1.	Regular	expressions	include	any	symbol	at	the	end	of 	a	string	(i.e.,	an	element	of 	),	as	well	as	the	operators.	and.

2.	It	is	also	a	regular	expression	for	two	regular	expressions,	R1	and	R2,	to	be	joined	together.	Its	notation	is	R1	+	R2.

3.	It	is	also	a	regular	expression	to	concatenate	two	regular	expressions,	such	as	R1	and	R2.	Its	symbolic	representation	is	
R1R2.

4.	Regular	expression	R's	closure	or	iteration,	R*,	is	likewise	a	regular	expression.

5.	If 	R	is	a	regular	expression,	then	the	order	of 	evaluation	of 	R	is	also	a	regular	expression,	denoted	by	(R).

6.	Applying	the	aforementioned	principles	once	or	several	times	yields	exact	regular	expressions	over	6,	which	may	then	be	
used in a recursive fashion to create further regular expressions.

The following theorems describe the relationship between finite robots and regular expressions, as well as between reverse 
- engineering and regular expressions.

Theorem:	The	pattern	R	is	registered	by	the	transition	system	if 	and	only	if 	there	is	a	route	from	the	initial	state	to	the	end	
state with value w.

Theorem:	A	regular	expression	may	be	used	to	describe	any	set	L	that	can	be	processed	by	a	finite	automaton	M.

NOTE: 

i. First, each regular expression may have an equivalent finite automaton, and any finite automata can have a regular 
expression.

ii. If  two finite automata accept the same set of  strings, we say that they are equivalent.

iii.	 If 	P	and	Q	are	regular	expressions	over,	then	they	are	comparable	if 	and	only	if 	they	represent	the	same	set.	Equalities	
between	P	and	Q	hold	if 	and	only	if 	the	respective	finite	automata	are	equivalent.

iv. The class of  regular sets over is shown to be equivalent to the class of  regular languages over. Further, we may build a finite 
automaton	A	accepting	L	whose:	a.	States	correspond	to	variables	if 	and	only	if 	G	is	a	regular	grammar	producing	the	
regular	language	L(G).

v.	 A0	is	the	starting	point.	b.

vi. P’s productions are reflected in the transitions. c.

Pumping lemma is a theorem that proves that an input string must satisfy the criterion of  being a regular set. Because of  
this	theorem,	we	can	“pump”	several	different	input	strings	from	a	single	string.	

Conclusion
The FSM library equips users with the tools they need to create and test out state machines, grammatical structures, and 

conditionals. It lends credence to the idea that creating a constructive proof  is the best way to establish the reality of  a machine 
or language. Therefore, the method presented in the proof  is one that can be realized using FSM. Teachers and students may 
now use digital tools in addition to traditional paper and pencil sketches to gain competence and identify flaws in a design. They 
may, instead, use FSM testing infrastructure to build tests with real-time feedback. Students may then build and create unit 
tests for their constructive algorithms, which not only reinforces their Computer Science education but also encourages active 
reasoning and the study of  formal languages. There has been encouraging reaction from students, and the examples included 
in the piece came from the library. Our hope is that CS departments everywhere will embrace our method of  combining 
instruction in the theory of  computing with hands-on experience in building computational models.

In	 the	 future,	we	want	 to	add	additional	constructors	 to	 the	 library,	especially	 those	 that	help	with	state	reduction.	We	
want	 to	enhance	 the	 library	by	adding	a	user-friendly	graphical	user	 interface.	We	do	not	want	students	 to	use	a	graphical	
interface like those described in the linked work to build their own machines and grammars. Instead, we want students to 
keep up the practise of  writing code in order to build machines and grammars, which can then be presented graphically in 

View Point
Bhawna Kaushik and Mayank Saini 



Global Journal of Enterprise Information System

Vol 15  |  Issue 1  |  Jan-Mar 2023 Online ISSN : 0975-1432 | Print ISSN : 0975-153X100

order	to	animate	execution	and	visualize	their	structure.	Also,	regular	expressions	and	Turing	machine	extensions	will	have	
better	support.	Although	the	later	machines	can’t	do	much	more	computing	than	a	regular	Turing	Machine,	they	may	simplify	
the implementation of  certain designs, which is useful for classroom use. Finally, we want to transform the library into an 
embedded	DSL	(like	Racket’s	hygienic	macros	[4])	that	can	be	used	in	the	classroom	and	where	the	proofs	can	be	automatically	
verified	by	a	computer	(e.g.,	using	tools	like	DrACuLa	[2]	and	Coq	[8]).

References:- 
Aho	A.	V.	and	Ullman	J.	D.,	“Foundations	of 	Computer	Science,”	Computer	Science	Press,	New	York,	1994.	[5].	Hopcroft	J.	E.	and	•	
Ullman	J.	D.,	“Introduction	to	Automata	Theory,	Languages,	and	Computation,”	Addison-Wesley,	1979.

Zadeh	L.	A.,	“Fuzzy	sets,”	Inform.	And	Control,	vol.	8,	pp.	338-353,	1965.	•	

Hersh	H.	M.	and	Caramazza	A.,	“A	fuzzy	set	approach	to	modifiers	and	vagueness	in	natural	language,”	J.	Exp.	Psychol.,	vol.	105,	pp.	•	
254-276,	1976.	

Klir	G.	J.	and	Yuan	B.,	“Fuzzy	Sets	and	Fuzzy	Logic-Theory	and	Applications,”	Prentice	Hall,	Englewood	Cliffs,	NJ,	1995.	•	

Zimmerman	H.	J.,	“Fuzzy	set	theory	and	its	Applications,”	Kluwer	Academic	Publishers,	1996.	•	

Dubois	D.,	Ostasiewicz	W.	and	Prade	H.,	“Fuzzy	sets:	history	and	basic	notions,”	in:	D.	Dubois,	H.	Prade	(Eds.),	“Fundamentals	of 	•	
Fuzzy	Sets,”	The	Handbooks	of 	Fuzzy	Sets	Series,	Kluwer,	Dordrecht,	pp.	21–124,	2000.	

Zadeh	L.	A.,	“Toward	a	generalized	theory	of 	uncertainty	(GTU)–an	outline,”	Information	Sciences,	vol.	172,	no.	1,	pp.	1–40,	2005.	•	

Walker	C.	L.	and	Walker	E.	A.,	“The	algebra	of 	fuzzy	truth	values,”	Fuzzy	Sets	and	Systems	vol.	149,	pp.	309–347,	2005•	

Novak	V.,	“Are	fuzzy	sets	a	reasonable	tool	for	modelling	vague	phenomena?,”	Fuzzy	Sets	and	Systems,	vol.	156,	pp.	341–348,	2005.	•	

Tong	R.	M.	and	Bonissone	P.	P.,	“A	linguistic	approach	to	decision	making	with	fuzzy	sets,”	IEEE	Trans	on	Syst.,	Man,	Cybern.	SMC-9,	•	
pp.	716-723,	1980.	

Ding	X,	Wang	Z,	Rovetta	A,	et	al.	Locomotion	analysis	of 	hexapod	 robot.	 In:	Miripour-Fard	B	 (ed.)	Climbing	and	walking	 robots.	•	
IntechOpen,	2010,	pp.	291–309.	

Tedeschi	F	and	Carbone	G.	Design	issues	for	hexapod	walking	robots.	Robotics	2014;	3(2):	181–206.	•	

	Zielinska	T,	Goh	T	and	Chong	CK.	Design	of 	autonomous	hexapod.	In:	Proceedings	of 	the	first	workshop	on	robot	motion	and	control	•	
(RoMoCo),	Kiekrz,	Poland,	29	June	1999,	pp.	65–69.	New	York:	IEEE.	

Saranli	U,	Buehler	M	and	Koditschek	DE.	Design,	modeling	and	preliminary	control	of 	a	compliant	hexapod	robot.	In:	Proceedings	of 	•	
2000	IEEE	international	conference	on	robotics	and	automation	(ed	BS	Carlisle),	San	Francisco,	CA,	24–28	April	2000,	pp.	2589–2596.	
New	York:	IEEE.	

Simpson	J,	Jacobsen	CL	and	Jadud	MC.	Mobile	Robot	Control	–	The	Subsumption	Architecture	and	occam-pi.	In:	Welch	P,	Kerridge	•	
J	and	Barnes	F	(eds)	Communicating	process	architectures.	Amsterdam:	IOS	Press,	2006,	pp.	225–236.	6.	Li	M,	Yi	X,	Wang	Y,	et	al.	
Subsumption	model	implemented	on	ROS	for	mobile	robots.	In:	2016	Annual	IEEE	systems	conference	(SysCon)	(ed	B	Rassa),	Orlando,	
FL,	18–21	April	2016,	pp.	1–6.	New	York:	IEEE.

Submission Date Submission Id word Count Character Count

24-Jan-2023 (Turnitin) 3512 21408

Analyzed Document Submitter email Submitted by Similarity

4.2 VP2_Bhawna 
_GJEIS Jan to Mar  

2023.docx

kaushikbhawna311@gmail.com Bhawna	Kaushik 07%

Annexure 15.11

GJEIS Prevent Plagiarism in Publication
The	Editorial	Board	had	used	the	Turnitin	–	a	Swedish	anti-plagiarism	software	tool	which	is	a	fully-automatic	machine	learning	text-	
recognition system made for detecting, preventing and handling plagiarism and trusted by thousands of  institutions across worldwide. 
Ouriginal by Turnitin is an award-winning software that helps detect and prevent plagiarism regardless of  language. Combining text- 
matching with writing-style analysis to promote academic integrity and prevent plagiarism, Ouriginal is simple, reliable and easy 
to	use.	Ouriginal	was	acquired	by	Turnitin	in	2021.	As	part	of 	a	larger	global	organization	GJEIS	and	Turnitin	better	equipped	to	
anticipate	the	foster	an	environment	of 	academic	integrity	for	educators	and	students	around	the	globe.	Ouriginal	is	GDPR	compliant	
with	privacy	by	design	and	an	uptime	of 	99.9%	and	have	trust	to	be	the	partner	in	academic	integrity	(https://www.ouriginal.com/)	
tool	to	check	the	originality	and	further	affixed	the	similarity	index	which	is	{07%}	in	this	case	(See	below	Annexure-I).	Thus,	the	
reviewers and editors are of  view to find it suitable to publish in this Volume-15, Issue-1, Jan-Mar 2023.

A Finite State Automaton is a Tool to Represent Formal Language



DOI: 10.18311/gjeis/2023 Vol 15  |  Issue 1  |  Jan-Mar 2023 101

www.gjeis.com

7%
SIMILARITY INDEX

6%
INTERNET SOURCES

1%
PUBLICATIONS

0%
STUDENT PAPERS

1 3%

2 1%

3 1%

4 1%

5 <1%

6 <1%

7 <1%

8 <1%

9 <1%

on_a_tool_to_represent_formal_language_RESEARCH_PAPER…
ORIGINALITY REPORT

PRIMARY SOURCES

archive.org
Internet Source

ir.amu.ac.in
Internet Source

www.jiit.ac.in
Internet Source

Lecture Notes in Computer Science, 2006.
Publication

www.careerage.com
Internet Source

ipfs.io
Internet Source

epdf.tips
Internet Source

edoc.pub
Internet Source

lib.unisayogya.ac.id
Internet Source

7%
SIMILARITY INDEX

6%
INTERNET SOURCES

1%
PUBLICATIONS

0%
STUDENT PAPERS

1 3%

2 1%

3 1%

4 1%

5 <1%

6 <1%

7 <1%

8 <1%

9 <1%

on_a_tool_to_represent_formal_language_RESEARCH_PAPER…
ORIGINALITY REPORT

PRIMARY SOURCES

archive.org
Internet Source

ir.amu.ac.in
Internet Source

www.jiit.ac.in
Internet Source

Lecture Notes in Computer Science, 2006.
Publication

www.careerage.com
Internet Source

ipfs.io
Internet Source

epdf.tips
Internet Source

edoc.pub
Internet Source

lib.unisayogya.ac.id
Internet Source

Reviewers 
Memorandum

Reviewer’s Comment 1:	The	paper	titled	“A	Finite	State	Automaton	
is	a	Tool	to	Represent	Formal	Language”	is	a	well-written	and	
informative piece on the use of  finite state automata in formal 
language representation. The author presents a clear and concise 
explanation of  the key concepts and techniques involved in the design 
and implementation of  these automata, making it accessible even to 
those with limited prior knowledge of  the subject.

Reviewer’s Comment 2: One of  the strengths of  this paper is the 
depth of  knowledge demonstrated by the author. It is evident that 
they have a strong understanding of  the subject matter and are able to 
explain complex ideas in a clear and concise manner. This expertise 
is further demonstrated by the way the author connects finite state 
automata to other concepts in computer science.

Reviewer’s Comment 3: The important aspect of  this paper is its 
attention to detail. The author provides a thorough explanation of  
the underlying principles and theories of  finite state automata, as 
well as a step-by-step guide to constructing and testing these models. 
This level of  detail is especially helpful for readers who are new to 
the field, as it provides a solid foundation for further exploration and 
experimentation.

Bhawna	Kaushik	and	Mayank	Saini	 
“A	Finite	State	Automaton	is	a	Tool	to	 

Represent	Formal	Language” 
Volume-15, Issue-1, Jan-Mar 2023. (www.gjeis.com)

https://doi.org/10.18311/gjeis/2022 
Volume-15, Issue-1, Jan-Mar 2023 

Online iSSN : 0975-1432,  Print iSSN	:	0975-153X 
Frequency	:	Quarterly,		Published	Since	:	2009

Google Citations: Since 2009 
H-Index	=	96 

i10-Index:	964

Source: https://scholar.google.co.in/citations? 
user=S47TtNkAAAAJ&hl=en

Conflict of Interest:	Author	of 	a	Paper	 
had no conflict neither financially nor academically.

Citation

 Disclaimer 
All	views	expressed	in	this	paper	are	my/our	own.	Some	of 	the	content	is	taken	from	open-source	websites	&	some	are	copyright	free	for	the	
purpose	of 	disseminating	knowledge.	Those	some	we/I	had	mentioned	above	in	the	references	section	and	acknowledged/cited	as	when	and	
where	required.	The	author/s	have	cited	their	joint	own	work	mostly,	and	tables/data	from	other	referenced	sources	in	this	particular	paper	
with	the	narrative	&	endorsement	have	been	presented	within	quotes	and	reference	at	the	bottom	of 	the	article	accordingly	&	appropriately.	
Finally,	some	of 	the	contents	are	taken	or	overlapped	from	open-source	websites	for	knowledge	purposes.	Those	some	of 	i/we	had	mentioned	
above in the references section. On the other hand, opinions expressed in this paper are those of  the author and do not reflect the views of  the 
GJEIS. The authors have made every effort to ensure that the information in this paper is correct, any remaining errors and deficiencies are 
solely their responsibility.

 Acknowledgement 
The acknowledgment section is an essential part of  all academic research papers. It provides appropriate recognition to all contributors for their 
hard work and effort taken while writing a paper. The data presented and analyzed in this paper by (Bhawna and Mayank) were collected first 
handily and wherever it has been taken the proper acknowledgment and endorsement depicts. The authors are highly indebted to others who 
facilitated	accomplishing	the	research.	Last	but	not	least,	endorse	all	reviewers	and	editors	of 	GJEIS	in	publishing	in	the	present	issue.

 Editorial   
 Excerpt    

The	article	has	7%	of 	plagiarism	which	is	the	accepted	percentage	as	per	the	norms	and	standards	of 	the	journal	for	publication.	As	per	the	
editorial board’s observations and blind reviewers’ remarks the paper had some minor revisions which were communicated on a timely basis 
to the authors (Bhawna and Mayank), and accordingly, all the corrections had been incorporated as and when directed and required to do 
so.	The	comments	related	to	this	manuscript	are	noticeably	related	to	the	theme	“A Finite State Automaton is a Tool to Represent Formal 
Language”	both	subject-wise	and	research-wise.	This	paper	 is	well-researched	and	well-written	that	provides	valuable	 insights	 into	 the	use	
of  finite state automata in representing formal languages. It is a must-read for anyone interested in this topic or working in related fields. 
The paper’s clarity, depth of  knowledge, and relevance to real-world applications make it a valuable contribution to the field of  computer 
science.	After	comprehensive	reviews	and	the	editorial	board’s	remarks,	the	manuscript	has	been	categorized	and	decided	to	publish	under	the	
“viewpoint”	category.

(c) GJEIS 2023

View Point
Bhawna Kaushik and Mayank Saini 


