
Framework and Techniques for Managing
Technical Debt in Software Development Lifecycle

– Sameer S Paradkar*
Enterprise Architect, Architecture Group, Business & Platforms Solutions, Global Delivery Centre - India

 sameer.paradkar@atos.net https://orcid.org/0000-0001-7517-1574

Paper Nomenclature: View Point

Paper Code: GJEISV13I1JM2021VP2

Submission at Portal (www.gjeis.com): 01-Feb-2021

Manuscript Acknowledged: 06-Feb-2021

Originality Check: 06-Feb-2021

Originality Test (Plag) Ratio
(Plagiarism Checker-X): 03%

Author Revert with Rectified Copy: 19-Feb-2021

Peer Reviewers Comment (Open): 20-Feb-2021

Single Blind Reviewers Explanation: 01-March 2021

Double Blind Reviewers Interpretation: 02-March-2021

Triple Blind Reviewers Annotations: 11- March-2021

Authour Update (w.r.t. correction,
suggestion & observation): 18-March-2021

Camera-Ready-Copy: 20-March-2021

Editorial Board Excerpt & Citation: 24-March-2021

Published Online First: 31-March-2021

 Article History

ENTERPRISE INFORMATION SYSTEM

 Abstract
Purpose: Technical Debt and the subsequent problems are discussed often in industry and
scientic journals. In this paper, we introduce a framework for managing technical Debt. The
solution consists of methods to manage and repay technical debt. The goal of the framework
is to provide a better overview of the Technical Debt items for the IT Development team
and SMEs. Technical Debt calculation is the cost of fixing structural quality issues in an
application that, if left unfixed, puts the business at critical risk. Technical Debt typically
includes issues that are highly likely to cause severe business disruption; and may not
include all problems, just the most critically serious ones.Technical Debt describe problems
that ariseduring development when workarounds aremade due to tight project deadlines or
technical improvements are neglected over a longer time. In atechnical metaphor to financial
debt, the workaroundis interpreted as the debt and the resulting problemsas interest rates.
Additionally, the paper also catagorizes Technical Debtand provides a view on the metrics
and tools.

www.gjeis.com

•	 Present Volume & Issue (Cycle): Volume 13 | Issue 1 | Jan-Mar 2021
•	 International Standard Serial Number:
Online ISSN: 0975-1432 | Print ISSN: 0975-153X

•	 DOI (Crossref, USA) https://doi.org/10.18311/gjeis/2021
•	 Bibliographic database: OCLC Number (WorldCat): 988732114
•	 Impact Factor: 2.69 (GIF, Citescore, SIF), CiteFactor: 1.0 (2020-21)
•	 Editor-in-Chief: Dr. Subodh Kesharwani
•	 Frequency: Quarterly

•	 Published Since: 2009
•	 Research database: EBSCO https://www.ebsco.com
•	 Review Pedagogy: Single Blind Review/ Double Blind Review/ Triple
Blind Review/ Open Review

•	 Copyright: ©2021 GJEIS and it’s heirs
•	 Publisher: Scholastic Seed Inc. and KARAM Society
•	 Place: New Delhi, India.
•	 Repository (figshare): 704442/13

GJEIS

ISSN (Online) : 0975-1432
ISSN (Print) : 0975-153X
DOI: 10.18311/gjeis

Volume 13 | Issue 1 | Jan-Mar 2021

Dr. Subodh Kesharwani
Editor-in-Chief

Published by

www.gjeis.com

ENTERPRISE INFORMATION SYSTEM

Since 2009 in Academic & Research

 Keywords Technical Debt  |  Code Analyzers  |  Frameworks  |  KPI  |  Metrices

GJEIS is an Open access journal which access article under the Creative Commons. This CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0)promotes access and re-use of scientific and scholarly research and publishing.

*Corresponding Author (Sameer)

Global Journal of Enterprise Information System

Vol 13 | Issue 1 | Jan-Mar 2021 Online ISSN : 0975-1432  |  Print ISSN : 0975-153X72

Framework and Techniques for Managing Technical Debt in Software Development Lifecycle

Introduction
Technical Debt represents the effort required to fix issues

that are embedded in the software implementation when an
application is released to production. Technical Debt across
different technology stacks, are estimated based on the number
of engineering flaws and violations of good architectural and
coding practices in the software implementation. This data-
driven approach to analyze and articulate the hotspots and
violations of engineering practices provides an objective and
actionable estimate of Technical Debt.

The estimation of the Technical Debt of an average-sized
application of 300,000 lines of code (LOC) is around 3.6$’s
per LOC.Minimizing defects is one of the effective ways to
keep development costs down and manage technical Debt,
which is a priority for many organizations. As the cost of
fixing defects increases exponentially as software progresses
through the development lifecycle, it’s critical to catch defects
as early as possible. The costs of discovering defects after
release are significant: up to 30 times more than if you catch
them in the architectural and design phases.

Modern day enterprises are critically dependent on
business applications. These applications are a collection
of data and business logic encapsulated in programming
constructs and plethora of platform components, such
as operating systems, databases, hardware and network
infrastructure. These components are mutable and each one
of them would be slowly but inevitably diverging from its ideal
state to a suboptimal level, which potentially leads towards
obsolescence or failure. Through judicious investment, IT
teams and executives can fight off the ravages of time and
reverse the aging process to reduce the technical debt.

Technical Debt–Problem Context
Over time, the number of platforms and applications

delivering enterprise capabilities grows significantly, leading
to duplication of solutions, overlap of capabilities across
multiple platforms, and layers of customization. These all
contribute to technical debt, which will negatively impact
business agility, modernization, digital transformation, and
the ability to be innovative. The majority of the IT budget
goes onrun, instead of on developing new capabilities.

There are a number of digital forces from AI, IoT,
Blockchain to Cloud and SaaS. Organizations across all
industries are constantly responding to these digital forces,
whether it is by transitioning to the cloud, adopting a new
SaaS application, replacing a legacy system, or integrating
the data behind all these different applications and systems.
These emerging digital forces are creating a proliferation of
projects for IT teams. And as more projects arise, IT is taking
shortcuts to complete them on time and meet the needs of
the business.

These shortcuts become IT’s only choice because they
are extremely constrained––both in terms of the number
of resources available and time. Typically IT teamsare not
adequately staffed to meet their business needs. As a result
of these shortcuts, IT creates more technical debt than ever
before, further draining their teams’ resources.It is critical that
we address technical debt, because legacy systems prevent
teams from moving quickly, innovating, modernizing, and
delivering new capabilities that are aligned with Intel’s digital
transformation.Catagories of technical debt:

Type of
Technical Debt Desription

Planned Debt This is introduced when quick changes are
done to reduce time to market

Accidental
Debt

This is a result of systems evolving over time.
When new capabilities are introduced, it
takes more time to implement them because
the design may not scale—thus requiring
significant refactoring.

Unavoidable
Debt

This is the result of complexity introduced
over time with many incremental changes
and deviations from the original design. This
type of debt is difficult to fix and therefore,
we must attempt to prevent this type of debt
from occurring in the first place.

Table 1: Types of Technical Debt

The accumulation of technical debt impacts both the cost
to deliver solutions and the ability to respond to customers’
needs. High technical debt leads to lower productivity, reduced
quality, and a need for constant design and code refactoring.
Accruing technical debt results in higher operational costs,
employee in-efficiency, and slower time to market. However,
more importantly, makeshift solutions stackingat top legacy
systems ultimately take more time and money to revise,
leaving fewer resources for innovation and growth. One of
the key pillars of digital transformation is technical debt
reduction. Reducing technical debt and modernizing legacy
systems by applying the technical debt framework will enable
to invest in new capabilities and digital transformation
initiatives for future success and reduce cybersecurity risk.

Framework for Addressing Technical
Debt

Sporadically pursuing technical debt is not effective.
Instead, we propose a framework to guide the technical debt
efforts. This framework is holistic, in that it encompasses
the full scope of technical debt to drive prioritization, aid
in decision making, and fuel digital transformation. Our
unique framework spans the entire business and application
domain.

The framework leverages the following vectors to measure
technical debt across the application stack:

DOI: 10.18311/gjeis/2021 Vol 13 | Issue 1 | Jan-Mar 2021 73

www.gjeis.com
View Point

Framework
Vector Description Assessment Attributes

Business
Value

Business benefits
enabled by the
technology

Business application
compatibility

Data and information
quality/timeliness

Facility for ease of use
and change

Technical
Value

Adherence of
the technology
to standards and
practices

Architectural alignment

Continuity and
resilience

Data protection and
privacy

Scalability &
performance

Cost
Total cost of
ownership (TCO)
of the technology

Hardware

Licensing

Maintenance

Support

Risk
Day-to-day burden
imposed by the
technology

Skills Competency

Compliance

Maintainability

Reputational risk

Supportability

Table 2: Technical Debt Management Framework

Using automated tools to measure and publish the technical
debt metrics helps raise visibility and make technical debt
reduction an enterprise-wide priority.As part of application
governance, it is important to introduce defined criteria to
measure and score technical debt. This helpsto quantify risk
and technical debt creation. The computed score will help
governance bodies to approve or reject a project before it gets
too far along. Adopting this model brings techical debt to
the surface, making it much more visible and forcing correct
decisions. The paper proposes a method to compute the cost
of a technical debt item and its impact to the enterprise to
prioritize technical debt issues and focus on the ones that
will most benefit. The cost includes the Principal which is
the effort to address the technical debt item and the Interest
which is the maintenance costand the risk that the debt might
get out of control.

It is important to note that the interest can continue
to increase based on time and other events that is, the cost
of technical debt continues to rise if not addressed early.
This model enables us to characterize every technical debt
opportunitywith verify that it aligns to the target technology
roadmap. It also helps us identify the items that carry the
most debt to determinetechnical debt reduction initiatives that
will bring significant immediate and long-term value. Using
this approach will allows to establish the core foundation
required to perform the assessment to reduce technical debt

systematically at an enterprise level. Each application is
assessed and tagged appropriately based on the framework.

Figure 1: Technical Debt Management Framework

Identify technical debt at the code and design levels by
leveraging open source platform for functional, structural
and vulnerability code analysis. These tools continuously
and automatically inspects code quality, finds bugs, security
vulnerabilities, and source code characteristics that may
indicate a deeper problem and issues.Next, establish a
method for calculating the TCO for each opportunity. This
method enables to assess costs consistently. Make sure to
include all aspects of the system, including costs, licenses,
hardware, support, and headcount. The assessment will result
in identifying potential business benefits and a reduction
in the number of platforms and services, which are better
aligned to the enterprise strategy, resulting inreductions in
the enterprise landscape.

Addressing Technical Debt
Poor software quality leads to huge technical debt and are

common challenges in real-life software projects. Carrying
out a software structural, functional and vulnerability
assessment effectively and adopting the recommendations
from it improves the design and implementation quality thus
addressing the technical debt. A comprehensive assessment
requires us to know the requirements in detail and weight
different design aspects in accordance with the requirements.
The amount of effort and time required to carry out a
comprehensive design assessment can be quite high. The key
is to pro actively leveraging software quality assessment tools
for structural and functional analysis thereby addressing
technical debt.

These structural and functional quality assessment
tools analyses code, and identifies software quality issues.
The tools analyse the health, complexity & cost of the
applicationportfolio, technical debt, architecture, and system
& code-level analytics. These tools provide insights into the
complex software structures to make informed decisions,
communicate about software health, measure efficiency and
prevent software catastrophes.The tools help you reduce
technical debt and improve the maintainability of business-
critical applications.

Sameer S Paradkar

Global Journal of Enterprise Information System

Vol 13 | Issue 1 | Jan-Mar 2021 Online ISSN : 0975-1432  |  Print ISSN : 0975-153X74

Studies have shown that a large percentage of software
budgets are spent on identifying and correcting software
defects. This makes sense to invest in technologies that can
help cut these costs. Automated products can drasticlly reduce
the amount of time spent on software reviews, reducing
development costs while improving time to market and
efficiency. These products can also easily identify issues that
can be missed during a manual inspection, increasing overall
code quality and therefore customer satisfaction. A well-
rounded approach to software quality assessment includes
automated products throughout the software development
lifecycle—during the stages when the code is being developed
and after it is complete—to improve the quality. Leveraging
both static and dynamic analysis tools, organizations can
improve quality throughout the software development
lifecycle. Static analysis products examine the software
without executing the program. They apply a set of rules to
the software code that help identify structural, functional and
security quality issues early in the development lifecycle. Static
analysis can help you identify and eradicate flaws before your
applications are deployedduring the implementation phase,
which usually results in a less costly remediation process.
Dynamic analysis products monitor programs while they’re
running, enabling you to identify run-time issues that can’t be
detected by examining the developed code.

By combining the static and dynamic analysis products,
you can improve your code quality, regardless of the
individual skill level or whether the code was produced in-
house or offsite. Together, these analysers can automateand
help development teams identify quality and compliance
issues throughout the software development cycle. As a
result, one can reduce the defects and technical Debtin the
applications, making them easier to maintain; decreasing
development costs; and accelerating your time to market.

Static Analysis - Automated
Measured of Technical Debt

The complexity of today’s business applications has
exceeded the capacity of individuals or teams to articulate
the end-2-end picture. Software programmers may be
experts in one or two technologies and languages, but none
will have expertise and knowledge in all the languages and
technologies leveraged to build modern day applications.
This is where the automated analysers play a vital role as part
of the engagement SDLC. There are three types of analysers
that can be leveraged for application quality analysis and
assessment which are explained in the following sections.

Functional Analysis
Functional code analyser’s assesses quality,interms,

degree of compliance with the coding practices of software
engineering that promote security, extensibility, reliability,
and maintainability. Functional analysers find weaknesses in

program code that might lead to vulnerabilities. Functional
analysers analysethe source code for specific defects as
well as for compliance with various coding standards
and coding guidelines. A fewtools alsoclub the feature
to identifiessecurity vulnerabilities and hotspots during
development and catch these critical issues. Fixing these
flaws during implementationphase can reduce the number of
builds necessary to produce an optimum and secured product
and educate the development team about coding practices
and guidelines.Functional analysers review the source code
to detect common bad practices, catch bugs, and make sure
the development adheres to standards and guidelines. Most
code analysis tools define a series of rulesets (100+ rules)
that identify different categories of issues in the code, for
example: programming errors, coding standards violations,
and security vulnerabilities.

Figure 2: Functional Analysis

Structural Analysis
The challenges of modern software systems converge

ultimately to their architecture. As systems become more
complex and huger, their architectures assume ever greater
importance in managing their growing coherence, reliability,
and integrity. When architectural integrity is compromised,
the probability for a serious operational bottleneck increases
dramatically. Interactions among layers and subsystems
will become increasingly more complex to articulate.
Software Composition Analyserslook inside to identify
architecture quality issues.The analyser’s read, analyse
and semantically understand all major kinds of source
code, across all layers of an application (GUI, logic and
data). By analysing all tiers of complex software, critical
application health metrics like robustness, maintainability,
transferability, flexibility, performance, or security can be
measured and compliance to best practices can be assessed.
Theanalyser’slookattheapplicationfromastatic viewpoint
butareabletosimulatehowtheapplication will run, connecting
all pieces of the puzzle, looking across different languages
anddatabases. Hence, analysers are able to perform analysis
of the entire application or system and its structural health.

Figure 3: Structural Analysis

Framework and Techniques for Managing Technical Debt in Software Development Lifecycle

DOI: 10.18311/gjeis/2021 Vol 13 | Issue 1 | Jan-Mar 2021 75

www.gjeis.com

Security VulnerabiltyAnalysis
Static Application Security (SAST) Toolsare designed

to analyze source code or compiled versions of code to help
find security flaws. Some tools are integrated with the IDE.
For the types of problems that can be detected during the
software development phase itself, this is a powerful phase
within the development life cycle to employ automated tools,
as it provides immediate feedback on the issues they might be
introducing into the code during software development. This
immediate feedback is very useful, especially when compared
to finding vulnerabilities much later in the development cycle.
Analyzer toolsperform both dynamic (automated penetration
test) and static (automated code review) analysis and finds
security vulnerabilities that include malicious code as well
as the absence of functionality that may lead to security
breaches. Analyzers can determine whether sufficient
encryption is employed and whether a piece of software
contains any application backdoors through hard-coded user
names or passwords. These tools employ a binary scanning
approach that produces more accurate testing results, using
methodologies developed and continually refined by world-
classexpert. The tool may returns fewer false positives,
developers can spend more time remediating problems and
less time sifting through non-threats.Analyzersscanning
the binary level, reviewing the compiled or “byte” code
rather than source code, one gets the most accurate and
comprehensive analysis. All applications, regardless of their
origin, can be scanned and reviewed by such analyzers.
Analyzers can even assess third-party software at the binary
level, without requiring access to the source code. Security
Analyzersare simply the most effective solution for source
code security analysis.

Figure 4: Security Vulnerability Analysis

Dynamic Analysis – Run-Time
Analysis

Dynamic Analysis are a set ofprocesses and tools to
ensure that application remains highly available and responds
to user requests within an acceptable time limit. Monitoring
tools help to achieve these goals by monitoring metrics such
as response time, memory, network bandwidth, IOPS,and
CPU time. The next generation tools that are based on cutting
edge technologies like machine learning and AI provide ways

to diagnose, triage, and resolve issues and bottlenecks in
applications and infrastructure. Theaspects that are critical
interms of application monitoring or APM aremonitoring
metrics, tracing and logging.

Application monitoring provides detailed visibility
into the performance, availability, response times, and user
experience of application and itsunderlying infrastructure.
The application monitoring helpsnot only to monitor
but rapidlytriage, diagnose, and resolve issues leveraging
cutting edge tools and technologies. Application monitoring
tools collect, stores, and analyse the necessary data and
metadata for troubleshooting, optimizing performance, root
cause analysis, and final resolution. They typically rely on
different types of instrumentation and profiling processes
to provide real-time insights into the application health and
its status. When performance exceeds automatically defined
thresholds, application teams are notified and then can drill
down contextually to trace transaction and performance
issues across the distributed infrastructure for triage and
resolution.

Key Characteristics of the Modern Monitoring Systems:

Anomaly Detection•	 . Anomaly detection capabilities
in monitoring tools can automatically alert users when
metrics deviate from the thresholds, assess their impact,
all without human intervention.

Correlations•	 . Correlation engines go a level deeper
and compare allparameters that contribute to metric
outcomes. They analyse and measure subtle changes in
one or more business metrics.

Root Cause Analysis•	 . Root cause analysis engines go
even further and suggest possible causes of a deviation
from the normal benchmark of a business metric or a
group of metrics. These engines articulate the cause
from historical correlations, or they provide IT-users
with tools to assist them localize a cause by comparing
multiple correlations.

Automation•	 : After detecting an anomaly, the product
will determine its root cause, suggest a remediation, and
predict the futureevents. They may even suggest ways
to optimize the business process to eliminate future
incidents.

Conclusion and Further Work
Integrate technical debt management into DevOps model

to make technical debt visible. This will avoid irresponsible
technical debt, and capture any deliberately or prudent debt
as part of the product backlog. Dedicated a certain percentage
of team effort (the exact percentage will vary depending on
the enterprise) to work on technical debt items with small
refactoring installments in each iteration. Adopting such
a model keeps everyone informed and drives the right

View Point
Sameer S Paradkar

Global Journal of Enterprise Information System

Vol 13 | Issue 1 | Jan-Mar 2021 Online ISSN : 0975-1432  |  Print ISSN : 0975-153X76

prioritization of new functionality. Effect culture change by
educating organization about the importance of managing
technical debt. The required new mindset embraces technical
debt management as a key component of good software
development practice and a key enabler of continued digital
transformation and success.

The resulting budget can now be applied to modernization,
innovation, and digital transformation initiatives. There
is a significant success in changing IT culture, making
technicaldebt management part of our everyday thinking.
This culture change is paramount in sustaining technical debt
management over the long term.The enterprise benefits of
technical debt reduction are:

Efficiency•	 :Less required TEAMS, lower support costs,
and less suppliers to manage.

Stability•	 : Fewer changes to the core platform means
fewer bugs to fix.

Agility•	 : Faster pace of change (faster validation).

Reusability•	 : Business units know what capabilities are
available, and developers know how to introduce new
functionality.

As next major step modernize legacy applications and
systems that are critical for the businesses. It is important
to provide support and secure legacy applications that are
critical to business. Modernization can help identify legacy
applications that are candidates for leveraging containers,
microservices, cloud, and other initiatives aligned to target
business goals. Modernization is a strategic investment that

allows innovation while enabling technical debt reduction.
Establish technology standards, CoE, and governance
frameworks, integrate them into the software delivery of
new capabilities across the enterprise. Update standards
and guidelines to keep pace with technology trends and the
business strategy.The success hinges on our ability to optimize
at every layer, then focus on what makes a difference for the
business.

References
[1], Jean-Louis Letouzey, Michel Ilkiewicz, “Managing •	
Technical Debt with the SQALE Method”, IEEE Software,
Vol.29, Issue.6, 2012

[2], Frederico Oliveira, Alfredo Goldman, Viviane Santos, •	
“Managing Technical Debt in Software ProjectsUsing Scrum:
An Action Research”, Agile Conference, 2015

[3], Muhammad Firdaus Harun, Horst Lichter. “Towards a •	
Technical Debt Management Framework based on Cost-Benefit
Analysis”, The Tenth International Conference on Software
Engineering Advances, 2015

[4], Marion Wiese, “Introducing a Framework for Managing •	
Technical Debt Developed by Practitioners”

[5], Ilya Khomyakov, Zufar Makhmutov, Ruzilya Mirgalimova •	
and Alberto Sillitti, “Automated Measurement of Technical
Debt: A Systematic Literature Review”, International
Conference on Enterprise Information Systems, 2019

[6], Carlos Fernández-Sánchez, Juan Garbajosa, Carlos •	
Vidal, Agustín Yagüe, �An Analysis of Techniques and
Methods for Technical Debt Management: a Reflection from
the Architecture Perspective�, International Workshop on
Software Architecture and Metrics, 2015

[7], Carlos Fern´andez-S´anchez, Juan Garbajosa, Juan •	
Garbajosa, �A Framework to Aid in Decision Making for
Technical Debt Management�, International Workshop on
Managing Technical Debt (MTD), 2015

Submission Date Submission Id Word Count Character Count

06-Feb-2021 1512941507 (Checker X) 3409 24040

Annexure 1

GJEIS Prevent Plagiarism in Publication�
Plagiarism Checker X 2021 helps you check plagiarism in your research papers, blogs, assignments, and websites. With higher speed
and accuracy, you can easily check your text similarity in just a few seconds. It had 3% Accepted percentage.

Framework and Techniques for Managing Technical Debt in Software Development Lifecycle

DOI: 10.18311/gjeis/2021 Vol 13 | Issue 1 | Jan-Mar 2021 77

www.gjeis.com

Sameer S Paradkar

 Editorial
 Excerpt

The article has 03% of plagiarism which is the accepted percentage as per the norms and standards of the journal for the publication. As
per the editorial board’s observations and blind reviewers’ remarks the paper had some minor revisions which were communicated on a
timely basis to the authors (Sameer) and accordingly all the corrections had been incorporated as and when directed and required to do
so. The comments related to this manuscript are noticeably related to the theme “Managing Technical Debt in Software Development
Lifecycle’’ both subject-wise and research-wise. The paper proposes a framework for managing technical Debt with an objective to
provide a better overview of the Technical Debt items for the IT Development team and SMEs. The paper also catagorizes Technical
Debt and provides a view on the metrics and tools. The solution consists of methods to manage and repay technical debt. Overall, the
paper promises to provide a strong base for the further studies in the area. After comprehensive reviews and editorial board’s remarks
the manuscript has been categorised and decided to publish under “View Point’’ category.

Reviewers
Memorandum

External Critic (National): The paper is well structured and
planned. Usage of tables and figures have made paper more
understandable and interesting to read.

Outer Reviewer’s (Global) Observation: Even though the
article is crisp, then also it has tried to cover various significant
aspects. It has introduced a framework for managing technical
Debt. The solution consists of methods to manage and repay
technical debt.

 Disclaimer
All views expressed in this paper are my/our own. Some of the content is taken from open source websites & some are copyright free
for the purpose of disseminating knowledge. Those some We/I had mentioned above in the references section and acknowledged/
cited as when and where required. The author/s has cited their joint own work mostly, Tables/Data from other referenced sources
in this particular paper with the narrative & endorsement has been presented within quotes and reference at the bottom of the article
accordingly & appropriately. Finally, some of the contents which are taken or overlapped from open source websites for the knowledge
purpose. Those some of i/we had mentioned above in the references section. On the other hand opinions expressed in this paper are
those of the author and do not reflect the views of the GJEIS. The author has made every effort to ensure that the information in this
paper is correct, any remaining errors and deficiencies is solely the responsibility of the author.

 Acknowledgement
The acknowledgment section is an essential part of all academic research papers. It provides appropriate recognition to all contributors
for their hard work and effort taken while writing a paper. The data presented and analyzed in this paper by (Sameer) were collected
first handily and wherever it has been taken the proper acknowledgment and endorsement depicts. The author is highly indebted to
others who had facilitated in accomplishing the research. Last but not least endorse all reviewers and editors of GJEIS in publishing
in a present issue.

Sameer S Paradkar
“Framework and Techniques for Managing Technical Debt in

Software Development Lifecycle”
Volume-13, Issue-1, Jan-Mar 2021. (www.gjeis.com)

https://doi.org/10.18311/gjeis/2021
Volume-13, Issue-1, Jan-Mar 2021

Online iSSN : 0975-1432, Print iSSN : 0975-153X
Frequency : Quarterly, Published Since : 2009

Google Citations: Since 2009
H-Index = 96

i10-Index: 964

Source: https://scholar.google.co.in/citations?
user=S47TtNkAAAAJ&hl=en

Conflict of Interest: Author of a Paper
had no conflict neither financially nor academically.

Citation

View Point

www.scholasticseed.in

