
 Global Journal of Enterprise Information System

Compression - An Approach for Energy Conservation in Wireless Networks

Compression -

Approach for Energy

Conservation in

Wireless Networks

Sudhansh Sharma
Jaipuria Institute of Management Studies

Vasundhara,Ghaziabad,U.P., India

sudhansh74@rediffmail.com

Neetu Sharma
Gurukul - The School
Ghaziabad,U.P., India

neetu.sharma@gurukultheschool.in

Durgansh Sharma
Jaipuria Institute of Management,

Noida, U.P., India

durgansh@gmail.com

Global Journal of Enterprise Information System April- June

 Volume-3

Theme-Based Paper

Energy Conservation in Wireless Networks

 An

Approach for Energy

Conservation in

Wireless Networks

Jaipuria Institute of Management Studies(JIMS)

, India

 ,

Jaipuria Institute of Management,

KEYWORD

 IEEE 802.11

Wireless

Networks

Huffman

Compression

 ABSTRACT

IEEE 802.11 has become more and more popular
due to its low cost and easy deployment,
not provide quality of service (QoS) support. QoS
refers to the ability of network to provide some
consistent services for data transmission. Thus, a
lot of research works have been carried out to
enhance the QoS support in IEEE 802.11 networks.
Improvement in the QoS involves Data Transfer
Rate(DTR) optimization as a prime factor for
reliable data transfer in energy efficient manner.
The performed work explores data compression
as a technique to optimize the Data Transfer
rate (DTR), because reduc
size of the data to be transferred on the network
leads to reduce the effective file transfer time
and hence preserves the network energy.

June 2011

3 Issue-II

 Page 76

EYWORDS

 Energy

Conservation

QoS

ABSTRACT

IEEE 802.11 has become more and more popular
due to its low cost and easy deployment, it does
not provide quality of service (QoS) support. QoS
refers to the ability of network to provide some
consistent services for data transmission. Thus, a
lot of research works have been carried out to
enhance the QoS support in IEEE 802.11 networks.
mprovement in the QoS involves Data Transfer
Rate(DTR) optimization as a prime factor for
reliable data transfer in energy efficient manner.
The performed work explores data compression
as a technique to optimize the Data Transfer
rate (DTR), because reduction in the effective
size of the data to be transferred on the network
leads to reduce the effective file transfer time
and hence preserves the network energy.

 Global Journal of Enterprise Information System April- June 2011

 Volume-3 Issue-II

Theme-Based Paper

Compression - An Approach for Energy Conservation in Wireless Networks Page 77

PPPPREAMBLEREAMBLEREAMBLEREAMBLE

The development of Information Communication
Technology (ICT) following Moore's Law has
resulted in a situation where network users are able
to make use of a wealth of versatile services. But,
batteries desired to operate the electronics
technology has not followed this development, which
has resulted in a situation where network device
user's battery can only enable a few hours of active
use. Therefore, we need to focus increasingly on
energy efficient wireless communication to reduce
energy consumption, and also to cut down
greenhouse emissions. It has been observed that
there is significant energy consumption, while
transmitting data over wireless networks. So, data
compression techniques are one of the simplest way
to trade the overhead of compression for less
communication energy[i][ii]. Work performed here
demonstrates the usages of data compression to
reduce the energy consumption in modern devices;
this involves implementation of Huffman coding, a
data compression algorithm and using its outcome
to secure the network energy significantly.

REVIEW OF LITERATURE

In a traditional LAN we are connecting computers to
the network through cables. But the wireless local
area network (WLAN) is a flexible data
communications system that can use either infrared
or radio frequency technology to transmit and
receive information over the air. Here each computer
has a radio Modem and Antenna with which it can
communicate with other systems. One important
advantage of WLAN is the simplicity of its
installation. Installing a wireless LAN system is easy
and can eliminate the needs to pull cable through
walls and ceilings. WLANs allow greater flexibility
and portability than do traditional wired local area
networks (LAN). IEEE 802.11 was implemented as
the first WLAN standard. It is based on radio
technology operating in the 2.4 GHz frequency and
has a maximum throughput of 1 to 2 Mbps.

A wireless Local area network (WLAN) is a flexible
data communication system implemented as an
extension to, or as an alternative for a wired LAN. As
the name suggests a wireless LAN is one that
makes use of wireless transmission medium, i.e.
wireless LAN transmits and receives data over air,

and minimizing the need for the wired connection.
Thus wireless LAN combines data connectivity with
user mobility. WLANs also allow greater flexibility
and portability than traditional wired LAN which
requires a wire to connect a user computer to the
network. The initial cost for WLAN hardware can be
higher than the cost of wired LAN hardware. But the
overall installation expenses and lifecycle cost can
be significantly lower. With WLAN users can access
shared information without looking for a place to
plug in, and network managers can setup or
argument networks without installing or moving
wires. There are many reasons people choose to
deploy a wireless LAN, Increase the productivity due
to increase mobility, Lower infrastructure cost
compared to wired networks, Rapid deployment
schedules etc.

The IEEE 802.11 Wireless Local Area Network
(WLAN) is one of the most widely deployed wireless
network technologies in the world today. Although
IEEE 802.11 has become more and more popular
due to its low cost and easy deployment, it does not
provide quality of service (QoS) support. QoS refers
to the ability of network to provide some consistent
services for data transmission. Improvement in the
QoS involves various factors like network energy
conservation, network time utilization, Data Transfer
Rate (DTR) optimization etc. as the prime factors for
reliable data transfer in energy efficient manner.

To improve the QoS of the WLAN network, we
explored data compression as a technique to
optimize the data transfer rate in wireless networks.
Reduction in the effective size of the data to be
transferred on the network leads to reduce the
effective file transfer time and hence preserves the
network energy. The performed work exhibits the
conservation of energy in both transfer of file over
the network, by reducing the file transfer time
through the compression and decompression
mechanism performed at server and client side
respectively, apart from this the energy of the battery
consumed at both ends of the network is also
saved[i][ii].

In the performed work, Huffman coding is
implemented for file compression and its outcome is
used in client server environment, to study the
improvement in network DTR. Huffman codes are
intact the Prefix codes, which is a type of code
system (typically a variable-length code)

 Global Journal of Enterprise Information System April- June 2011

 Volume-3 Issue-II

Theme-Based Paper

Compression - An Approach for Energy Conservation in Wireless Networks Page 78

distinguished by its possession of the "prefix
property"; which states that there is no valid code
word in the system that is a prefix (start) of any other
valid code word in the set.

A code for a message set is a mapping from each
message to a bit string. Each bit string is called
codeword, which are denoted using the syntax
C={(S1,W1),(S2,W2),……..(SM,WM)} Typically in
computer science we deal with fixed length codes,
such as the ASCII code which maps every printable
character and some control characters into 7 bits.
For compression, however, we would like code
words that can vary in length based on the
probability of the message. Such variable length
codes have the potential problem that if we are
sending one codeword after the other it can be hard
or impossible to tell where one codeword finishes
and the next starts. For example- given the code
{(a,1),(b,01),(c,101),(d,011)}, the bit-sequence 1011
could either be could either be decoded as aba, ca,
or ad. To avoid this ambiguity we could add a
special stop symbol to the end of each codeword
(e.g., a 2 in a 3-valued alphabet), or send a length
before each symbol. These solutions, however,
require sending extra data.

A more efficient solution is to design codes in which
we can always uniquely decipher a bit sequence into
its code words. We will call such uniquely decodable
code ,a prefix code which is a special kind of
uniquely decodable code in which no bit-string is a
prefix of another one, for example
{(a,1),(b,01),(c,101),(d,011)} 1 01 000 001 . All prefix
codes are uniquely decodable since once we get a
match, there is no longer code that can also
match[iv].

Huffman codes are optimal prefix codes generated
from a set of probabilities by a particular algorithm,
the Huffman Coding Algorithm. The algorithm is now
probably the most prevalently used component of
compression algorithms, used as the back end of
GZIP, JPEG and many other utilities.

Huffman coding finds the optimal way to take
advantage of varying character frequencies in a
particular file. On average, using Huffman coding on
standard files can shrink them anywhere from 10%
to 30% depending to the character distribution. (The
more skewed the distribution, the better Huffman
coding will do.)

The idea behind the coding is to give less frequent
characters and groups of characters longer codes.
Also, the coding is constructed in such a way that no
two constructed codes are prefixes of each other.
This property about the code is crucial with respect
to easily deciphering the code.

ALGORITHM

1. The two free nodes with the lowest weights
are located.

2. A parent node for these two nodes is
created. It is assigned a weight equal to the
sum of the two child nodes.

3. The parent node is added to the list of free
nodes, and the two child nodes are removed
from the list.

4. One of the child nodes is designated as the
path taken from the parent node when
decoding a 0 bit. The other is arbitrarily set
to the 1 bit.

5. The previous steps are repeated until only
one free node is left. This free node is
designated the root of the tree.

To reconstruct the data from the compressed file, we
need to decode the file data. File decoding requires
the encoded file and Huffman code tree. Before,
reading bits from encoded file a pointer pointing on
the root of Huffman code tree is defined. Then the
encoded file is read in bitwise order ; if it’s 0, then
the left child of the current node is traversed; if it’s 1,
go to the right child of the node. The process of
traversal is repeated till the leaf node is reached,
arrival at the leaf node decodes a character. The
decoded character is written to the decoded file,
repoint the pointer on the Huffman code tree root
and continue reading from encoded file until you
reach the file end[iii].

RESEARCH OBJECTIVES

• To implement The Huffman Code for data

compression and use it in client server environment,

for the analysis of the improvement in network Data

Transfer Rate DTR, achieved through Compression.

• To determine the effectiveness of implemented

Compression Algorithm, by evaluating the

compression ratio.

 Global Journal of Enterprise Information System April- June 2011

 Volume-3 Issue-II

Theme-Based Paper

Compression - An Approach for Energy Conservation in Wireless Networks Page 79

RESEARCH METHODOLOGY

The implementation involves compression and
decompression of data at server and client side
respectively, as a tool to conserve energy of the
network. The Data is compressed at the server side
and transferred from the server to the client side
where the received data is decompressed to regain
its original format. Due to the reduction of file size it
takes lesser time and hence lesser network energy,
for the transfer of data over the network. Which is of
prime concern when the networks are wireless,
because saving the time in a wireless network, for
data transfer directly impacts on the saving of
energy related to the network and devices attached
to the network like laptops, mobiles etc, by saving
their battery consumption. The Compression and
Decompression of file is performed through Huffman
coding. So, the project implementation as a whole
involves following :

1. File Compression & Decompression[v]
2. Client Server communication & file

transfer[vi]

FILE COMPRESSION & DECOMPRESSION

The file to be transferred in client server
environment, is compressed at the server side and
then passed on to the client, where it is received and
then decompressed to its original format. The
compression and decompression are performed by
implementing the through Huffman algorithm.

Huffman compression is a lossless compression
algorithm that is ideal for compressing text or
program files. Huffman compression belongs into a
family of algorithms with a variable codeword length.
That means that individual symbols (characters in a
text file, for instance) are replaced by bit sequences
that have a distinct length. So, symbols that occur a
lot in a file are given a short sequence while others
that are used seldom get a longer bit sequence[v].

The file compression and decompression involves
the development of following codes :

1. bool CompressHuffman(BYTE *pSrc, int
nSrcLen, BYTE *&pDes, int &nDesLen);

2. bool DecompressHuffman(BYTE *pSrc, int
nSrcLen, BYTE *&pDes, int &nDesLen);

COMPRESSION

1. The compression code starts by initializing
511 of Huffman nodes by its ASCII values:

CHuffmanNode nodes[511];

for(int nCount = 0; nCount < 256; nCount++)

nodes[nCount].byAscii = nCount;

2. Then, it calculates each ASCII frequency in
the input buffer:

for(nCount = 0; nCount < nSrcLen; nCount++)

nodes[pSrc[nCount]].nFrequency++;

3. Then, it sorts ASCII characters depending
on frequency:

qsort(nodes,256,sizeof(CHuffmanNode),
frequencyCompare);

4. Then, it constructs Huffman tree, to get each
ASCII code bit that will be replaced in the
output buffer:

 int nNodeCount = GetHuffmanTree(nodes);

Constructing Huffman involves putting all
nodes in a queue, and replacing the two
lowest frequency nodes with one node that
has the sum of their frequencies so that this
new node will be the parent of these two
nodes. And do this step till the queue just
contains one node (tree root).

 // parent node

pNode = &nodes[nParentNode++];

// pop first child

pNode->pLeft = PopNode(pNodes,
nBackNode--, false);

// pop second child

 Global Journal of Enterprise Information System April- June 2011

 Volume-3 Issue-II

Theme-Based Paper

Compression - An Approach for Energy Conservation in Wireless Networks Page 80

pNode->pRight = PopNode(pNodes,
nBackNode--, true);

// adjust parent of the two poped nodes

pNode->pLeft->pParent = pNode->pRight-
>pParent = pNode;

// adjust parent frequency

pNode->nFrequency = pNode->pLeft-
>nFrequency + pNode->pRight-
>nFrequency;

5. Then, the final step in the compression is to
write each ASCII code in the output buffer:

int nDesIndex = 0;

// loop to write codes

for(nCount = 0; nCount < nSrcLen;
nCount++)

{

(DWORD)(pDesPtr+(nDesIndex>>
3)) = nodes[pSrc[nCount]].dwCode
<< (nDesIndex&7);

nDesIndex +=
nodes[pSrc[nCount]].nCodeLength;

 }

• (nDesIndex>>3): >>3 to divide by 8 to reach
the right byte to start with.

• (nDesIndex&7): &7 to get the remainder of
dividing by 8, to get the start bit.

At the compressed buffer, we save Huffman tree
nodes with its frequencies so we can construct
Huffman tree again at the time of decompression
(just the ASCIIs that have a frequency).

DECOMPRESSION

The decompression involves the constructed
Huffman tree, then loop in the input buffer to replace
each code with its ASCII. the input buffer, in this
case, is a stream of bits that contain the codes of
each ASCII. To replace the code with the ASCII, we
need to iterate Huffman tree with the bit stream till
we find a leaf [v]. Then, we can append its ASCII at
the output buffer:

int nDesIndex = 0;

DWORD nCode;

while(nDesIndex < nDesLen)

{

 nCode =
(*(DWORD*)(pSrc+(nSrcIndex>>3)))
>>(nSrcIndex&7);

 pNode = pRoot;

 while(pNode->pLeft)

 {

pNode = (nCode&1) ?
pNode->pRight : pNode->pLeft;

nCode >>= 1;

nSrcIndex++;

 }

pDes[nDesIndex++] = pNode-
>byAscii;

}

• (nSrcIndex>>3): >>3 to divide by 8 to reach
the right byte to start with.

• (nSrcIndex&7): &7 to get the remainder of
dividing by 8, to get the start bit.

CLIENT SERVER COMMUNICATION & FILE
TRANSFER

The file compressed at the server side is passed to
the client side where it is decompressed; however
the client server communication involves the
implementation of TCP/IP protocol and simple file
transfer protocol, by using MFC CSocket class. The
data to be communicated between client and server
is a compressed file, compressed through Huffman
algorithm. The work performed, related to server and
client side coding is as follows :

SERVER CODE

There are three major functions performed by this
code:

1. first listen for and establish a connection
with the client,

2. next send the client the length of the file,
3. finally send the file to the client in chunks.

In the first part, the code creates a CSocket object
named sockSrvr and configures it to listen on a pre-

 Global Journal of Enterprise Information System April- June 2011

 Volume-3 Issue-II

Theme-Based Paper

Compression - An Approach for Energy Conservation in Wireless Networks Page 81

designated port (which must be known to the server,
#defined 8686).

Secondly, when a connection request is received on
the port, a CSocket object named sockConnection is
created to handle the connection. The connection is
accepted by the sockConnectionobject in the call
to CSocket::Accept(), which actually hands the
connection off to a new port address,
leaving sockSrvr free to listen for further connection
requests on the originally-designated port.

Finally, after the acceptance of connection, the
server imposes simple protocol for file transfer.
Before actual transfer of file data, the server sends
the total length of the file (in
bytes). CFile::GetLength() retrieves the file's length
in bytes, and the next function, htonl(), compensates
for differences in machines that store integers in
big-endian versus little-endian format i.e. htonl() is
used to ensure platform independence of raw socket
code, and to ease porting issues form one machine
to another. Since we're using CSocket, there's no
chance that the code will be used on anything but a
Windows/Intel platform. The code involves a loop to
send the length of the file to the client. In the
loop, CSocket::Send() is called repeatedly until all
bytes of the file's length are sent to the client[vi].

CLIENT CODE

There are many parallels between the client-side
code and that of the server, as before, there are
three main parts:

1. making a connection,
2. getting the file's length,
3. getting the file's data in chunks.

In the first part, a CSocket object
named sockClient is created and attempts a
connection to the server on the pre-designated
port(8686). The address of the server is specified by
theCString object named strIP which can store either
a dotted IP address or a machine name.

Once the connection is made, the second part
callsCSocket::Receive() in a loop to get the length of
the file, which is converted by the ntohl() function
into big-endian or little-endian format as appropriate.

In the third part, a BYTE buffer of
size RECV_BUFFER_SIZE is allocated from the
heap, and CSocket::Receive() is called in a loop
until all bytes of the file are received. Note
that RECV_BUFFER_SIZE can be different
from SEND_BUFFER_SIZE, although in this code,
they are the same (both are #defined to 4096).

The only tricky part of this code is the determination
of the number of bytes to ask for
in CSocket::Receive(). It is coded to get as many
bytes as possible, up to the size of the buffer, except
in the last call to CSocket::Receive(), in which we
want only the remaining bytes in the file. The C++
ternary operation
(i.e., (condition)?(cond=TRUE):(cond=FALSE)) is
used for this purpose. The code works even
if CSocket::Receive() does not retrieve the number
of bytes requested. For example, suppose 4096
bytes are asked(i.e.,iiGet ==4096)
but CSocket::Receive() only returns 2143 bytes.
Then only write the number of bytes actually
received, and update the remainder in the number of
bytes left to receive, based only on the number
actually received, not the number asked for[v].

ANALYSIS AND INTERPRETATION

The file compression mechanism implemented here,
is Huffman Code Algorithm, which leads to lossless
compression. This class of compression is used to
preserve the file bits, because while transferring the
files over the network if there is any loss of bits then
the file is damaged, thus it will be of no use at the
receiver end. Further, to conserve the network
energy, reliable and efficient file compression and
decompression mechanism is highly desired. In the
performed work, it is demonstrated and analyzed
that how the compression and decompression
mechanism are implemented and are contributing to
conserve the network energy. Here, it is analyzed by
recording and comparing the file transfer time of
uncompressed file with that of the compressed file.

The results are as follows:

1. Average Compression Ratio = 0.40
2. Average Percent Compression = 60%
3. Average Percent Data Transfer Time Saved

= 47%
4. Average Percent improvement in DTR =

 Global Journal of Enterprise Information System April- June 2011

 Volume-3 Issue-II

Theme-Based Paper

Compression - An Approach for Energy Conservation in Wireless Networks Page 82

6.5%

The observed variation in compression ratio is
graphically shown in figure 1.1

Figure 1.1: Compression Ratio Vs Size of

Uncompressed File (MB)

The graph, shown in figure 1.1 above, appears to be
sinusoidal, but the least square fitting of the curve,
shows the linear variation in the compression ratio
with the file size. However the observed variation in
the compression ratio is the result of the content of
the independent files, and as the implemented
compression mechanism is Huffman coding which is
a lossless compression mechanism by nature. Thus,
some of the files which are rich in images or so,
achieved lesser compression ratio. But, the files with
more of the textual content and less of the images
shows better compression ratio. The observed
variation in compression ratio is from 0.39 to 0.41,
the average compression ratio is 0.40 with a
standard deviation of ~0.01. Further, the
implemented compression mechanism works well
and achieves 60% of average percent file
compression, which is quite significant.

FINDING AND DISCUSSION

The level of file compression achieved here, has a
positive impact over network energy consumption.
The same is demonstrated by recording and
comparing the file transfer time of the uncompressed

file with that of the compressed file. It is observed
that, due to compression, on an average 47% of the
Data Transfer Time is saved. Further, it is observed
that due to compression, average improvement in
the Data Transfer Rate is 6.5% .

LIMITATION OF THE STUDY

The performed study has only evaluated the
implementation of one compression algorithm i.e.
Huffman coding, for evaluating the effect of
compression over network energy conservation. The
improvement in network DTR can be evaluated by
considering various other compression algorithms.

CONCLUSION

Through the Performed work it is observed that
compression of data, while transferring it over the
network saves the network energy by reducing the
file transfer time. If the compression and
decompression codes are used at transmitter and
receiver end (or Client and Server end) respectively,
then the combination can be quite useful and energy
conserving, in the sense, instead of sending a big
file from server to client (or one node to other), which
in fact will consume more network data transfer time.
It will be beneficial to compress the file at the
transmission end and then pass it over the network,
and the receiver will decompress it in to its original
format, hence less of the network transmission time
will be consumed which in turn will save the energy
of all the devices connected to the network.

The performed work is specifically useful for the
wireless networks, because the wireless network
devices are generally battery operated, and if these
devices seek more time in sending and receiving the
files from the network, the more the battery or
energy is consumed. Thus file compression with
suitably good compression ratio and decompression
mechanism, will definitely saves energy of wireless
network.

The interpretation of the results , leads to the
conclusion that, “The higher the compression ratio
is, the lesser is the file transfer time, hence lesser is
the energy consumption of the network”

0.39

0.39

0.39

0.40

0.40

0.40

0.40

0.40

0.41

0.41

0.0 50.0 100.0 150.0 200.0 250.0

C
o

m
p

re
ss

io
n

 R
a

ti
o

Size of Uncompressed File (MB)

Compression

Ratio =

compressed

size

/uncompress

ed size

Linear

(Compression

Ratio =

compressed

size

/uncompress

ed size)

 Global Journal of Enterprise Information System April- June 2011

 Volume-3 Issue-II

Theme-Based Paper

Compression - An Approach for Energy Conservation in Wireless Networks Page 83

REFERENCES

i. Prof. Rathnakar Acharya, Dr. V. Vityanathan, Dr. Pethur
Raj Chellaih “WLAN QoS Issues and IEEE 802.11e QoS
Enhancement “International Journal of Computer
Theory and Engineering, Vol. 2, No. 1793-8201,pg 143-
149, 1 February, 2010

ii. Le Wang Manner, J., “Evaluation of data compression for
energy-aware communication in mobile networks”,
Proceedings Cyber-Enabled Distributed Computing and
Knowledge Discovery, 2009. Cyber C '09. International
Conference on 10-11 Oct. 2009, p: 69 - 76

iii. I. F. Akyildiz et al, "Wireless sensor networks: a survey,"
Computer Networks, vol. 38, pp. 393-422, March 2002.

iv. Mark Nelson ,Jean Loup Gailly, “The Data
Compression”, Second Edition, Publisher: IDG Books
Worldwide, Inc.,ISBN: 1558514341

v. ”Simple & Fast Huffman Coding”,
http://www.codeproject.com/KB/recipes/Huffman_codi
ng.aspx

vi. “Network Transfer Of Files Using MFC's CSocket
Class”,http://www.codeproject.com/KB/IP/SocketFileT
ransfer.aspx

vii. Arya V., Mittal A., Joshi R. C., ”An Efficient Coding
Method for Teleconferencing and Medical Image
Sequences”, Proceedings of Third International
Conference on Intelligent Sensing and Information 2005,
pp. 8-13, 14-17 December 2005.

viii. Wen-Jyi Hwang, Ching-Fung Chine, Kuo-Jung Li,
”Scalable Medical Data Compression and Transmission
using Wavelet Transform for Telemedicine
Applications”, IEEE Transactions on Information
Technology in Biomedicine, Vol. 7, No. 1, pp. 54-63,
March 2003.

ix. Benedettli A., Scarabottolo N., ”Towards a Dedicated
Compression Pipeline for Document Image Archicing”,
Proceedings of Workshop on Document Image Analysis
1997, pp. 40-43, 20th January 1997.

x. Yi Sun, Yi-Jin Yang, Phing Zhou, ”Wavelet-Based
Compression of Terrains”, Proceedings of IEEE
International Geo-science and Remote Sensing
Symposium 2003, Vol. 3, pp. 2030-2032, 21-25 July 2003.

xi. Mello C. A¿ B.,”Synthesis of Images of Historical
Documents for Web Visualization”, Proceedings of 10th
International Multimedia M0delling Conference 2004,
pp. 220-226, January 2004.

xii. Capon J., ”A Probabilistic Model for Run-Length Coding
of Pictures”, IRE Transactions on Information Theory,
pp. 157-163, 1959.

xiii. Huffman D. A., ”A Method for the Construction of
Minimum Redundancy Codes”, Proceedings of IRE, Vol.
40, No. 10, pp. 1098-1101, 1952.

xiv. Abramson N., ”Information Theory and Coding”,
McGraw-Hill, New York, 1963.

xv. Welch T. A., ”A Technique for High-Performance Data
Compression”, IEEE Computer, pp. 8-19, 1984.

xvi. Freeman A. (translator), Fourier J., ”The Analytical
Theory of Heat”, Cambridge University Press, 1878.

xvii. Jayant N. S. and Noll P., ”Digital Coding of Waveforms”,
Prentice Hall, 1984.

xviii. Antionini M., Barlaud M., Mathieu P. and Daubechies I.,
”Image Coding using Wavelet Transform”, IEEE Trans.
on Image Proc., Vol. 1, No. 2, pp. 205-220, April 1992.

xix. WAP Forum Ltd., ”WAP WAE Specification - Version
1.1”, May 1999.

http://www.karamsociety.org

