
 Global Journal of Enterprise Information System

Performance Measurement And Comparison Of Lossless Compression Algorithms

Performance

Measurement and

Comparison of Lossless

Compression Algorithms

Sudhansh Sharma
Jaipuria Institute of Management Studies(JIMS)

Vasundhara,Ghaziabad,U.P.India
sudhansh74@rediffmail.com

Neetu Sharma
Gurukul - The School,

Ghaziabad,U.P. India
neetu.gurukul@gmail.com

Durgansh Sharma
Jaipuria Institute of Management,

Noida, U.P., India
durgansh@gmail.com

Global Journal of Enterprise Information System October- December

 Volume-3

Empirical ArticleEmpirical ArticleEmpirical ArticleEmpirical Article

Performance Measurement And Comparison Of Lossless Compression Algorithms

nce

Measurement and

f Lossless

Compression Algorithms

Jaipuria Institute of Management Studies(JIMS)

India

Jaipuria Institute of Management,

KEYWORD
 Data

compression

Lossless

Compression

 ABSTRACT

Data compression is widely required in the era
Information-communication
where it can be used to conserve the energy of
networks, because a file with reduced size
requires less time to get passed over the
Thus the technique of compression and
decompression can be quite effective in
establishing efficient communication over the
computer networks. The work performed in the
paper, compares the Loss less data compression
algorithms and analyses various
compression ratio, compression speed,
decompression speed, saving percentage. An
experimental comparison of a number of
different lossless data compression algorithms is
presented in this paper. The article is concluded
by stating which algorithm performs well for text
data.

December 2011

3 Issue-IV

 Page 5

EYWORDS
 Lossy

Compression

Compression

parameters

ABSTRACT

Data compression is widely required in the era of
communication-Technology (ICT),

where it can be used to conserve the energy of
networks, because a file with reduced size
requires less time to get passed over the network.
Thus the technique of compression and
decompression can be quite effective in
establishing efficient communication over the
computer networks. The work performed in the
paper, compares the Loss less data compression
algorithms and analyses various parameters like
compression ratio, compression speed,
decompression speed, saving percentage. An
experimental comparison of a number of
different lossless data compression algorithms is
presented in this paper. The article is concluded

gorithm performs well for text

 Global Journal of Enterprise Information System October- December 2011

 Volume-3 Issue-IV

Empirical ArticleEmpirical ArticleEmpirical ArticleEmpirical Article

Performance Measurement And Comparison Of Lossless Compression Algorithms Page 6

PPPPREAMBLEREAMBLEREAMBLEREAMBLE

Data compression enters into the field of Information
Theory because of its concern with redundancy.
Redundant data or information consumes both more
space and time, because redundant information in a
message takes extra bit to encode, and if we can get
rid of that extra information, we will have reduced
the size of the message and hence the processing
speed. There are various compression techniques to
get rid of this redundant information. This paper
examines the performance of various compression
techniques viz. the Run Length Encoding Algorithm,
Huffman Encoding Algorithm, Shannon Fano
Algorithm, Adaptive Huffman Encoding Algorithm,
Arithmetic Encoding Algorithm and Lempel Zev
Welch (LZW) Algorithm. In particular, performance of
these algorithms in compressing text data is
evaluated and compared.

REVIEW OF LITERATUREREVIEW OF LITERATUREREVIEW OF LITERATUREREVIEW OF LITERATURE

The Compression techniques can be lossless or
lossy. Lossy data compression concedes a certain
loss of accuracy in exchange for greatly increased
compression. Lossy compression proves effective
when applied to graphics images and digitized voice.
Whereas Lossless compression consists of those
techniques guaranteed to generate an exact
duplicate of the input data stream after a
compress/expand cycle. This is the type of
compression used when storing database records,
spreadsheets, or word processing files. In these
applications, the loss of even a single bit could be
catastrophic. Lossless compression techniques like
run-length coding [i], Huffman encoding [ii][viii],
arithmetic coding [iii], Limpel-Ziv-Welch (LZW)
coding [iv] etc. are widely used in compressing
medical and satellite images as they retain all
information from the original image. Lossy
compression techniques like Discrete Fourier
Transform (DFT) [v], Discrete Cosine Transform
(DCT) [vi], Discrete Wavelet Transform (DWT) [vii]
transform the image data to a different domain and
quantize the coefficients. These techniques give
higher compression ratios.

Run Length EncodingRun Length EncodingRun Length EncodingRun Length Encoding

Run Length Encoding or simply RLE is the simplest
of the data compression algorithms. The
consecutive sequences of symbols are identified as

runs and the others are identified as non runs in this
algorithm. This algorithm deals with some sort of
redundancy [9]. It checks whether there are any
repeating symbols or not, and is based on those
redundancies and their lengths. Consecutive
recurrent symbols are identified as runs and all the
other sequences are considered as non-runs. For an
example, the text “ABABBBBC” is considered as a
source to compress, then the first 3 letters are
considered as a non-run with length 3, and the next
4 letters are considered as a run with length 4 since
there is a repetition of symbol B. The major task of
this algorithm is to identify the runs of the source file,
and to record the symbol and the length of each run.
The Run Length Encoding algorithm uses those runs
to compress the original source file while keeping all
the non-runs without using for the compression
process [xi].

Huffman EncodingHuffman EncodingHuffman EncodingHuffman Encoding

Huffman Encoding Algorithms use the probability
distribution of the alphabet of the source to develop
the code words for symbols. The frequency
distribution of all the characters of the source is
calculated in order to calculate the probability
distribution. According to the probabilities, the code
words are assigned. Shorter code words for higher
probabilities and longer code words for smaller
probabilities are assigned. For this task a binary tree
is created using the symbols as leaves according to
their probabilities and paths of those are taken as
the code words. Two families of Huffman Encoding
have been proposed: Static Huffman Algorithms and
Adaptive Huffman Algorithms. Static Huffman
Algorithms calculate the frequencies first and then
generate a common tree for both the compression
and decompression processes [9]. Details of this
tree should be saved or transferred with the
compressed file. The Adaptive Huffman algorithms
develop the tree while calculating the frequencies
and there will be two trees in both the processes. In
this approach, a tree is generated with the flag
symbol in the beginning and is updated as the next
symbol is read[xi].

The Shannon Fano AlgorithmThe Shannon Fano AlgorithmThe Shannon Fano AlgorithmThe Shannon Fano Algorithm

This is another variant of Static Huffman Coding
algorithm. The only difference is in the creation of
the code word. All the other processes are
equivalent to the above mentioned Huffman
Encoding Algorithm[xi].

 Global Journal of Enterprise Information System October- December 2011

 Volume-3 Issue-IV

Empirical ArticleEmpirical ArticleEmpirical ArticleEmpirical Article

Performance Measurement And Comparison Of Lossless Compression Algorithms Page 7

Arithmetic EncodingArithmetic EncodingArithmetic EncodingArithmetic Encoding

In this method, a code word is not used to represent
a symbol of the text. Instead it uses a fraction to
represent the entire source message [x]. The
occurrence probabilities and the cumulative
probabilities of a set of symbols in the source
message are taken into account. The cumulative
probability range is used in both compression and
decompression processes. In the encoding process,
the cumulative probabilities are calculated and the
range is created in the beginning. While reading the
source character by character, the corresponding
range of the character within the cumulative
probability range is selected. Then the selected
range is divided into sub parts according to the
probabilities of the alphabet. Then the next character
is read and the corresponding sub range is selected.
In this way, characters are read repeatedly until the
end of the message is encountered. Finally a
number should be taken from the final sub range as
the output of the encoding process. This will be a
fraction in that sub range. Therefore, the entire
source message can be represented using a
fraction. To decode the encoded message, the
number of characters of the source message and
the probability/frequency distribution are needed [xi].

Lempel Zev Welch Algorithm Lempel Zev Welch Algorithm Lempel Zev Welch Algorithm Lempel Zev Welch Algorithm

Dictionary based compression algorithms are based
on a dictionary instead of a statistical model [x]. A
dictionary is a set of possible words of a language,
and is stored in a table like structure and used the
indexes of entries to represent larger and repeating
dictionary words. The Lempel-Zev Welch algorithm
or simply LZW algorithm is one of such algorithms.
In this method, a dictionary is used to store and
index the previously seen string patterns. In the
compression process, those index values are used
instead of repeating string patterns. The dictionary is
created dynamically in the compression process and
no need to transfer it with the encoded message for
decompressing. In the decompression process, the
same dictionary is created dynamically. Therefore,
this algorithm is an adaptive compression algorithm
[xi][xii].

RESEARCH OBJECTIVESRESEARCH OBJECTIVESRESEARCH OBJECTIVESRESEARCH OBJECTIVES

• To compare and contrast various
compression algorithms for different
compression performance evaluation
parameters

• The finding of this paper could create a
greater awareness on the choice of the
compression algorithm which works best
for textual compression.

RESEARCH METHODOLOGYRESEARCH METHODOLOGYRESEARCH METHODOLOGYRESEARCH METHODOLOGY

In this paper we studied compression ratio,
compression time, saving percentage as the
parameters to evaluate the effectiveness of
compression algorithms using file sizes. Some more
parameters to evaluate the performance of
compression algorithms are: Compression speed,
computational complexity and probability
distribution, which are also used to measure the
effectiveness.

The performed work involves implementation of
various compression algorithms. Further, the text
files of various size are processed through the
implemented code of the different compression
algorithms, and parameters like compressed file
size, compression time, decompression time etc are
recorded to evaluate various parameters like
compression ratio, compression speed, saving
percentage etc.

Compression Ratio is the ratio between the size of
the compressed file and the size of the source file.

����������	 ��
�� �
���� ��
�� ����������	

���� ������ ����������	

Compression Factor is the inverse of the
compression ratio. That is the ratio between the size
of the source file and the size of the compressed file.

����������	 ���
�� �
���� ������ ����������	

���� ��
�� ����������	

 Global Journal of Enterprise Information System October- December 2011

 Volume-3 Issue-IV

Empirical ArticleEmpirical ArticleEmpirical ArticleEmpirical Article

Performance Measurement And Comparison Of Lossless Compression Algorithms Page 8

Saving Percentage calculates the shrinkage of the
source file as a percentage.

����	� �����	
��� �%�

�
���� ������ ����������	 � ���� ��
�� ����������	

���� ������ ����������	
 %

All the above methods evaluate the effectiveness of
compression algorithms using file sizes. There are
some other methods to evaluate the performance of
compression algorithms. Compression time,
computational complexity and probability distribution
are also used to measure the effectiveness.

The performance measurements factors discussed
above are based on file sizes, time and statistical
models. Since they are based on different
approaches, all of them cannot be applied for all the
selected algorithms. Additionally, the quality
difference between the original and decompressed
file is not considered as a performance factor as the
selected algorithms are lossless. The performances
of the algorithms depend on the size of the source
file and the organization of symbols in the source
file. Therefore, a set of files including different types
of texts such as English phrases, source codes, user
manuals, etc, and different file sizes are used as
source files. A graph is drawn in order to identify the
relationship between the file sizes, the compression
and decompression time.

The performances of the selected algorithms vary
according to the measurements, while one algorithm
gives a higher saving percentage it may need higher
processing time. Therefore, all these factors are
considered for comparison in order to identify the
best solution. An algorithm which gives an
acceptable saving percentage within a reasonable
time period is considered as the best algorithm.

ANAANAANAANALYSIS AND INTERPRETATIONLYSIS AND INTERPRETATIONLYSIS AND INTERPRETATIONLYSIS AND INTERPRETATION

Five lossless compression algorithms are tested for
ten text files with different file sizes and different
contents. Followings are the results for 10 different
text files.

Compression RatioCompression RatioCompression RatioCompression Ratio

After applying compression algorithms on the ten
text files, following results are observed for the
compression ratio. Table-1 represents the average
compression ratio observed for various algorithms.
Based on the data recorded in Table-1, below, it is

analyzed that LZW algorithm gives excellent
compression ratio, where as the RLE algorithm
provides the worst of the same. The Graphical
representation of the average compression ratio
variation is given in Figure -1 below. Where as
Figure-2 depicts the observed compression ratio for
the entire set of 10 text files under study. Further,
Table-2 describes the trend analysis of the
compression ratio pattern followed by the various
algorithms under the study. Among all algorithms, its
observed that compression ratio of the RLE
increases with the increase in the original file size.

TABLE – 1: COMPRESSION RATIO – COMPARISON

COMPRESSION
ALGORITHM

AVERAGE
COMPRESSION RATIO

Run Length Encoding 0.98235853

LZW- Lempel-Ziv-Welch 0.571981384

Adaptive Huffman 0.597829479

Huffman Encoding 0.603261853

Shanon Fano 0.61491948

FIGURE – 1: COMPRESSION RATIO – COMPARISON

FIGURE–2: FILE SIZE Vs COMPRESSION RATIO
COMPARISON

TABLE – 2 : COMPRESSION RATIO – TREND EQUATION & R²
VALUE COMPARISON FOR COMPRESSION RATIO

0

0.2

0.4

0.6

0.8

1

1.2

A
v

e
ra

g
e

 C
o

m
p

re
ss

io
n

R
a

ti
o

COMPRESSION ALGORITHM

Average

Compression

Ratio

0

0.2

0.4

0.6

0.8

1

1.2

C
o

m
p

re
ss

io
n

 R
a

ti
o

File Size (KB)

Compression Ratio
RLE -Comp ratio

LZW - Comp

ratio

Aadaptive

huffman - Comp

ratio

Huffman

Encoding - Comp

ratio

Shannon Fano -

Comp ratio

 Global Journal of Enterprise Information System October- December 2011

 Volume-3 Issue-IV

Empirical ArticleEmpirical ArticleEmpirical ArticleEmpirical Article

Performance Measurement And Comparison Of Lossless Compression Algorithms Page 9

Compression Time Compression Time Compression Time Compression Time

Based on the values tabulated in Table-3, it is identified
that RLE consumes least amount of time where
Adaptive Huffman algorithm for file compression
requires maximum amount of time. This doesn’t mean
that RLE is the best because, comparing the results of
Table 3 and Table-1 for RLE, we observe that the
compression ratio is quite poor in case of RLE, which
means that compression , which is the basic purpose of
the algorithm is performed quickly but not effectively.
Whereas the compression ratio of Adaptive Huffman
algorithm is observed to be second best among the
algorithms under study and this is reflected in its
average compression time which is on the higher side.
Apart from this LZW’s , compression time is slightly
lesser than that of Adaptive Huffman and its
compression ratio is also slightly better than that of the
Adaptive Huffman Algorithm for file compression.
Analysing the Trendline equation data and R² Values,
given in table-4, we observe that results for LZW and
Adaptive Huffman coding are quite close and that of the
Huffman coding and Shanon Fano Algorithm are also
quite close but results for RLE are not observed to be
matching with either of the algorithm under study.

TABLE – 3 : COMPRESSION TIME – COMPARISON
COMPRESSION
ALGORITHM

AVERAGE COMPRESSION
TIME(SECONDS)

Run Length Encoding 9.3498

LZW- Lempel-Ziv-Welch 314.241

Adaptive Huffman 338.4653

Huffman Encoding 145.0981

Shanon Fano 131.1463

FIGURE –3: COMPRESSION TIME – COMPARISON

FIGURE – 4:FILE SIZE Vs COMPRESSION TIME

TABLE – 4: COMPRESSION TIME – TREND EQUATION & R²
VALUE COMPARISONVFOR COMPRESSION TIME
COMPRESSION
ALGORITHM

TREND
EQUATION TO
APPROXIMATE
COMPRESSION
TIME

R² VALUE FOR
EQUATION TO
APPROXIMATE
COMPRESSION
TIME

Run Length
Encoding

y = 2990x - 7098 0.735

LZW- Lempel-Ziv-
Welch

y = 10899x - 28523 0.754

Adaptive Huffman y = 11086x - 27129 0.792
Huffman Encoding y = 57060x - 16873 0.666
Shanon Fano y = 49577x - 14152 0.719

Saving Percentage Saving Percentage Saving Percentage Saving Percentage

Analysis of the values tabulated in Table -5 and Table -
6 Adaptive Huffman offers maximum saving percent,
apart from this there is a close contest between LZW,
Huffman Encoding and Shanon Fano algorithms, but
RLE stands ot of the line and offers least Saving
percent. Results of Table-6 shows that RLE follows
negative slope of trend line, thus it is interpreted that
the saving percent declines with the increase in the
original file size.

TABLE – 5: SAVING PERCENTAGE – COMPARISON
COMPRESSION ALGORITHM AVERAGE SAVING

PERCENTAGE (%)

Run Length Encoding 3.177851664

LZW- Lempel-Ziv-Welch 39.51374914

Adaptive Huffman 40.12850652

Huffman Encoding 38.95399071

Shanon Fano 38.03128421

FIGURE –5: SAVING PERCENTAGE – COMPARISON

COMPRESSION
ALGORITHM

TREND
EQUATION TO
APPROXIMATE
COMPRESSION
RATIO

R² VALUE FOR
EQUATION TO
APPROXIMATE
COMPRESSION
RATIO

Run Length
Encoding

y = 0.004x + 0.942 0.094

LZW- Lempel-
Ziv-Welch

y = -0.019x + 0.713 0.536

Adaptive
Huffman

y = -0.001x + 0.603 0.009

Huffman
Encoding

y = -0.003x + 0.632 0.160

Shanon Fano y = -0.003x + 0.636 0.105

0

100

200

300

400

A
V

E
R

A
G

E
 C

O
M

P
R

E
S

S
IO

N

T
IM

E
(m

s)

COMPRESSION ALGORITHM

Average Compression

Time(seconds)

-200000

0

200000

400000

600000

800000

1000000

1200000

1400000

C
O

M
P

R
E

S
S

IO
N

 T
IM

E
(m

s)

FILE SIZE (KB)

COMPRESSION TIME Vs FILE SIZE
RLE -

Compressio

n time(ms)

LZW -

Compressio

n time(ms)

Adaptive

Huffman -

Compressio

n time(ms)
Huffman

Encoding -

Compressio

n time(ms)
Shannon

Fanno -

Compressio

n time(ms)

0

10

20

30

40

50

Run Length

Encoding

LZW- Lempel-Ziv-

Welch

Adaptive Huffman

Algorithm

Huffman Encoding

Results

Shanon Fano

Algorithm

A
V

E
R

A
G

E
 S

A
V

IN
G

P
E

R
C

E
N

T
(%

)

COMPRESSION ALGORITHM

Average Saving percentage

 Global Journal of Enterprise Information System October- December 2011

 Volume-3 Issue-IV

Empirical ArticleEmpirical ArticleEmpirical ArticleEmpirical Article

Performance Measurement And Comparison Of Lossless Compression Algorithms Page 10

FIGURE – 6:FILE SIZE Vs SAVING PERCENT

TABLE – 6 : COMPRESSION TIME – TREND EQUATION & R²
VALUE COMPARISON FOR SAVING PERCENT

FINDING AND FINDING AND FINDING AND FINDING AND DISCUSSIONDISCUSSIONDISCUSSIONDISCUSSION

Adaptive Huffman Algorithm needs a relatively larger
time period for processing, because the tree should
be updated or recreated for both processes. The
processing time is relatively small since a common
tree for both the processes is used and is created
only once. LZW approach works better as the size of
the file grows up to a certain amount, because there
are more chances to replace identified words by
using a small index number.However, it can not be
considered as the most efficient algorithm, because
it can not be applied for all the cases.

The speed of the Run Length Encoding algorithm is
high, but the saving percentage is low for all
selected text files. Run Length Encoding algorithm is
designed to identify repeating symbols and to
replace by a set of characters which indicate the
symbol and number of characters in the run. The
saving percentage is low for selected text files as
there is less number of repeating runs.

FIGURE–7: ORIGINAL FILE SIZE Vs COMPRESSED FILE SIZE
FOR DIFFERENT ALGORITHM

Huffman Encoding and Shannon Fano algorithm
show similar performances except in the
compression times. Huffman Encoding algorithm
needs more compression time than Shannon Fano
algorithm, but the differences of the decompression
times and saving percentages are extremely low.
The code efficiency of Shannon Fano
Algorithm is a quite a low value compared to the
Huffman encoding algorithm. So the generated code
words using Shannon Fano algorithm have to be
improved more than the code words of the Huffman
Encoding. According to the differences of the
compression time Shannon Fano algorithm is faster
than the Huffman Encoding algorithm. So this factor
can be used to determine the more efficient
algorithm from these two.

CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION

The performances of the selected algorithms vary
according to the measurements, while one algorithm
gives a higher saving percentage it may need higher
processing time. Therefore, all these factors are
considered for comparison in order to identify the
best solution. An algorithm which gives an
acceptable saving percentage within a reasonable
time period for compression and decompression is
considered as the best algorithm. Based on the
results tabulated in table-7 below, the saving percent
parameter recognizes Adaptive Huffman as the best
algorithm. But, on grounds of compression &
decompression time, plus reasonably acceptable
compression ratio makes Shanon Fano as the most
suitable algorithm for file compression.

-10

0

10

20

30

40

50

60

S
a

v
in

g
 P

e
rc

e
n

ta
g

e
(%

)

File Size(KB)

Saving Percentage Vs File Size
RLE -

Saving

Percentag

e

LZW -

Saving

Percentag

e

Adaptive

Huffman -

Saving

Percentag

e
Huffman

Encoding -

Saving

Percentag

e

0

50,000

100,000

150,000

200,000

250,000

300,000

C
o

m
p

re
ss

e
d

 F
il

e
 S

iz
e

(K
B

)

Original File Size(KB)

RLE -

Compresse

d File Size

(KB)

LZW -

Compresse

d File Size

(KB)

Adaptive

Huffman -

Compresse

d File Size

(KB)

Huffman

Encoding -

Compresse

d File Size

(KB)

Shannon

Fanno -

Compresse

d File Size

(KB)

COMPRESSION
ALGORITHM

TREND EQUATION
TO APPROXIMATE
SAVING
PERCENTAGE

R² VALUE FOR
EQUATION TO
APPROXIMATE
SAVING
PERCENTAGE

Run Length
Encoding

y = -0.467x + 5.750 0.094

LZW- Lempel-Ziv-
Welch

y = 1.965x + 28.70 0.536

Adaptive Huffman y = 0.081x + 39.68 0.009

Huffman Encoding y = 0.391x + 36.8 0.160

Shanon Fano y = 0.307x + 36.34 0.105

 Global Journal of Enterprise Information System October- December 2011

 Volume-3 Issue-IV

Empirical ArticleEmpirical ArticleEmpirical ArticleEmpirical Article

Performance Measurement And Comparison Of Lossless Compression Algorithms Page 11

TABLE – 7 : CUMMULATIVE COMPARISON
Compressi
on
algorithm

Compre
ssed
File
Size-KB

Averag
e
Compr
ession
Ratio

Comp
ressio
n
Time-
ms

Decom
pressio
n Time-
ms

Savin
g
perce
ntage-
%

Run Length
Encoding

80954.3 0.98 9.35 10.54 3.18

LZW 47107.3 0.57 314.24 391.64 39.51

Adaptive
Huffman

49236.1 0.60 348.47 438.45 40.13

Huffman
Encoding

49683.5 0.60 145.10 200.25 38.95

Shanon
Fano

50643.6 0.61 131.15 146.50 38.03

FUTURE WORKFUTURE WORKFUTURE WORKFUTURE WORK

The Performed work can be extended to evaluate
the performance of Lossfull compression algorithms,
which are quite useful in image and video
compression. Different Lossfull compression
algorithms could be implemented and their
performance parameters can be evaluated. This
comparison could help to choose the most
appropriate algorithm among the implemented ones.

REFERENCESREFERENCESREFERENCESREFERENCES

i. Capon J., ”A Probabilistic Model for Run-Length Coding of
Pictures”, IRE Transactions on Information Theory, pp.
157-163, 1959.

ii. Huffman D. A., ”A Method for the Construction of
Minimum Redundancy Codes”, Proceedings of IRE, Vol. 40,
No. 10, pp. 1098-1101, 1952.

iii. Abramson N., ”Information Theory and Coding”, McGraw-
Hill, New York, 1963.

iv. Welch T. A., ”A Technique for High-Performance Data
Compression”, IEEE Computer, pp. 8-19, 1984.

v. Freeman A. (translator), Fourier J., ”The Analytical Theory
of Heat”, Cambridge University Press, 1878.

vi. Jayant N. S. and Noll P., ”Digital Coding of Waveforms”,
Prentice Hall, 1984.

vii. Antionini M., Barlaud M., Mathieu P. and Daubechies I.,
”Image Coding using Wavelet Transform”, IEEE Trans. on
Image Proc., Vol. 1, No. 2, pp. 205-220, April 1992.

viii. Mark Nelson ,Jean LoupGailly, “The Data Compression”,
Second Edition,Publisher: IDG Books Worldwide,
Inc.,ISBN: 1558514341

ix. Blelloch, E., 2002. Introduction to Data Compression,
Computer Science Department, Carnegie Mellon University.

x. Campos, A.S.E, Basic arithmetic coding by Arturo Campos
Website, Available
from:http://www.arturocampos.com/ac_arithmetic.html.

xi. S.R. Kodituwakku , U. S.Amarasinghe,” Comparison Of
Lossless Data Compression Algorithms for Text Data ”, Vol
1 No.4 pp 416-425,2008, Indian Journal of Computer
Science and Engineering , ISSN : 0976-5166

xii. R. Rajeswari, R. Rajesh,” WBMP
Compression”International Journal of Wisdom Based
Computing, Vol. 1(1), 2011,pp 50-53

http://www.karamsociety.org

