
Global Journal of Enterprise Information System January-June 2012

 Volume-4 Issue-I

Empirical ArticleEmpirical ArticleEmpirical ArticleEmpirical Article

Ground Station Software: A Dynamic and Scripted Approach Page 5

Ground Station Software: Ground Station Software: Ground Station Software: Ground Station Software:

A Dynamic and Scripted
Approach

Biswajit Panja
Computer Science, Engineering and Physics

University of Michigan-Flint, Flint, MI 48502
bpanja@umflint.edu

Bradley Schneider
Mathematics, Computer Science, and Physics

Morehead State University, Morehead, KY 40351
bradschneider@live.com

Priyanka Meharia
Accounting and Finance

Eastern Michigan University, Ypsilanti, MI 48197
pmeharia@emich.edu

 ABSTRACT

In the satellite world, there are many pieces of
software used to control ground stations. Several
iterations of such software exist, mainly as the result
of research projects either by universities or the
government. Unfortunately, these pieces of
software all repeat common mistakes and little
improvement in the software is made. The main
goal of this paper is to provide an outline for a
reusable and extensible application for the manual
and automated control of networked ground
stations. Essentially, the focus of this project is to
address the problems perceived in existing ground
station software. These problems are generally
addressed through the use of a dynamic language,
an object-oriented approach (everything, including
primitive data types, is an object in Ruby), and the
fact that the program is essentially open source
because it is written in an interpreted language.

KEYWORDS

Ground station

Ruby

Scripted approach GUI

Global Journal of Enterprise Information System January-June 2012

 Volume-4 Issue-I

Empirical ArticleEmpirical ArticleEmpirical ArticleEmpirical Article

Ground Station Software: A Dynamic and Scripted Approach Page 6

IIIINTRODUCTIONNTRODUCTIONNTRODUCTIONNTRODUCTION

Many diverse solutions exist in the field of ground
station software. However, almost all of these have
failed to gain widespread acceptance and use. In
other fields, software solutions see large re-use
because they sufficiently address the issues at hand
and provide the necessary features to accomplish a
certain job. Existing ground station software fails to
do that. Current trends favor unnecessarily complex
code written with static languages which are not
well-suited to the job. Specifically, many existing
software solutions use a modular framework to
facilitate re-use and flexibility. However, the modular
framework isn’t ideally implemented in a static
language environment due mainly to its complexity
and somewhat to its inefficiency. Successful
software must focus on providing the most important
features to the user through the simplest interface
possible, and doing that means using new
techniques.

PROBLEM STATEMENTPROBLEM STATEMENTPROBLEM STATEMENTPROBLEM STATEMENT

The single largest problem with existing ground
station software is that it isn’t as flexible as software
developers try to make it. Most implementations use
Java as their language of choice because it is
considered a reliable cross-platform solution. While
this might be true, Java is a very static language,
just like most popular languages, such as C and
C++. These languages are powerful and well-
tested, but that alone does not qualify them as good
choices for ground station software. While they are
flexible languages in a sense that they can perform
many diverse tasks, the paradigms and design
patterns they dictate are not always desirable. Due
to the fact that they are static languages, developers
are forced to create complex systems to allow for the
flexibility which they desire in their applications. For
example, with the modular approach many projects
use, software is organized into small components so
that the updating, removing, or adding of a
component has the smallest possible effect on the
other components. This saves time by ensuring that
system administrators do not have to re-compile the
entire application, but rather only the new parts,
which is a good thing. But in order for these
components to plug into each other correctly, each
piece must pass messages to the other pieces in the
specified way. In a system of significant size, which
categorizes most implementations, this quickly
becomes very difficult. What all this boils down to is
that this setup clearly has its flaws. Attempting to

make a flexible piece of software requires flexible
code and technology in the background; using static
languages is in fact possible, as shown by existing
projects, but such technology is certainly not
desirable for this task.

GROUND STATION SOFTWARE GROUND STATION SOFTWARE GROUND STATION SOFTWARE GROUND STATION SOFTWARE DESIGNDESIGNDESIGNDESIGN

Luckily, technology is always changing for the better,
making things more efficient and user- and
developer-friendly. One such technology which will
improve the world of ground station software is
dynamic programming languages. The definition of
a dynamic programming language is not entirely
clear, but in general the term refers to a group of
high-level languages which performs at run-time
operations which most languages perform at
compile time, if they perform them at all. Dynamic
languages are not necessarily a new thing; these or
similarly designed languages have been around for
decades. However, new technology has addressed
issues such as efficiency which have in the past
made them inferior to the more popularly used static
languages. Dynamic languages come with benefits
and features that static languages don’t – they can
extend objects and add new code at run-time, for
example. These features aren’t necessarily
exclusive only to dynamic languages, but dynamic
languages provide easy access to them while other
languages would require unattractive hack-like
coding if they are supported. Because of the
extensibility possible in applications developed with
dynamic languages, they are well-adapted for
creating systems which deal with unknown or
unpredictably changing components –a category of
systems which includes ground stations.

THE DYNAMIC DESIGNTHE DYNAMIC DESIGNTHE DYNAMIC DESIGNTHE DYNAMIC DESIGN

While choosing a new and innovative language for
this project might not alone and at face value seem
to lead to a new approach, a deeper consideration
will show that it indeed does; for lack of a better
term, this approach, which is somewhat dictated by
the nature of a dynamic language, will be referred to
as a dynamic design or a dynamic approach. It
simply refers to the paradigm most closely and
naturally linked with the methodology behind such
dynamic languages. Additionally, in this paper the
term “dynamic design” also refers to a modular
design. It was earlier stated that a modular design is
undesirable. This is because technologies used in
other software cannot support it well. When the
technology in the background changes to a dynamic

Global Journal of Enterprise Information System January-June 2012

 Volume-4 Issue-I

Empirical ArticleEmpirical ArticleEmpirical ArticleEmpirical Article

Ground Station Software: A Dynamic and Scripted Approach Page 7

language, however, a modular design quickly
becomes not only simple and easily implemented,
but also natural.

DESIGN GUIDELINESDESIGN GUIDELINESDESIGN GUIDELINESDESIGN GUIDELINES

With the argument for a revolution in the form of
dynamic programming languages comes the
proposal for a new ground station software project.
In keeping with the theme of dynamic software, a
dynamic programming language and thus a dynamic
design will be the best approach. For the scope of
this project, two languages seem to be contestable –
Ruby and Python. Both have well-developed
resources and support as well as a tendency to
speed up the development cycle. Both have fairly
recently gained a majority of their current popularity,
having lived in the shadow of other, more often used
languages. These languages are not, however, to
be considered too young or undeveloped. With the
boom in projects utilizing Python and Ruby,
resources have flourished as has the development
of each language. With that in mind, these are the
two best options for the development of new ground
station software. Because one of the enumerated
goals in the design of this project is object-
orientation (at the code level), and due to the fact
that Ruby’s support for classes seems more elegant
and to be a more central feature to the language,
Ruby will be the language used. Both certainly have
advantages and disadvantages, but these will not be
weighed further here.

High Level Design

The following attempts to outline the guidelines for
the design and implementation of the new dynamic
ground station software. The vision of the ground
station includes both manual and automated modes.
The system will feature an easy-to-use interface to
increase the simplicity and usability of the
application and to aid in the scheduling of tasks.
More details are described below:

Reusability across platforms- Reusability and
flexibility go hand in hand. There are two essential
questions that need resolution to meet this goal:
How modifiable is the code, and to what extent is the
code abstracted from the system hardware?
Because of the possibly diverse nature of ground
station implementations, the software must be as
modifiable as possible to ensure its cross-platform
success. One large step toward this is taken for the
developer by Ruby – because the code is

interpreted, the source is readily available and
modifiable. This allows station administrators to
modify necessary code to ensure compatibility with
their particular implementation. Another requirement
of the application is that it abstracts the application
from the hardware. In separating the application-
specific tasks from the hardware, the systems on
which the code will run are greatly increased in
number. Much of this is done simply through the
use of a high-level language.

Multi-tiered architecture
 In keeping with trends of modern internet
applications, the application should follow somewhat
closely a three-tiered architecture. The interface
presented to the user (or the scheduler in the case
of automated control) should interact with a server to
retrieve information stored in the database. The top,
most visible layer of the application should have no
direct contact with the database and data storage
level. This keeps communications standard and
simple, and avoids confusing and random access to
data. Also, because remote access is possible, it
might be at some time necessary for a local server
to access a remote database. This must also be
done through the remote server, such that servers
may communicate remotely, but only a local server
may access a local database.

User-interface
In keeping with the theme of using advanced
programming technology, the user interface will be
very modern and simple to use also. Many GUI’s
are overly simplified, making their use more difficult
than necessary. The GUI should be kept as simple
to use as possible for the sake of the user, not as
simple to create as possible for the sake of the
developer. In the GUI, satellite and telemetry data
will be easily viewed using various windows and
controls. The changing of satellite parameters is
also made possible by the GUI. If the satellite is not
in range, the adjustments should be scheduled and
made when the satellite is available. Therefore,
schedule data should be presented and made
manageable through means of the GUI. The ability
to make a routine schedule to be executed at every
pass is also crucial.

Scheduling- The ability to run the station in
automated mode should be a key feature of any new
ground station software, this one included. One key
feature of some dynamic programming languages of
which Ruby also takes advantage is Reflection. A
program written in a language that is said to be

Global Journal of Enterprise Information System January-June 2012

 Volume-4 Issue-I

Empirical ArticleEmpirical ArticleEmpirical ArticleEmpirical Article

Ground Station Software: A Dynamic and Scripted Approach Page 8

reflective is capable of producing or extending its
own code. The GUI will interpret user events or
accept textual input and in turn produce a valid script
to be executed at a pre-determined time. This script
could also simply be hand-coded if necessary, but
the validity of such a script might be questionable.
Essentially, the GUI should provide a sort of
graphical coding option which allows the user to
select available actions and commands from a list or
by means of visual controls and widgets so as to
avoid any errors in the scheduled process yet still
allow for full control and maximize the use of all of a
satellite’s capabilities.

The above summarizes the most innovative and
important aspects of the software being proposed.
These are not all the innovations, but summarize the
areas of development or use which are most greatly
affected by the switching to a more dynamic design.
What is expected of this project is that it will reach a
wider audience than previous software. Previous
designs have failed to be flexible. They are
prematurely optimized for modification using tools
not meant for the job, which detracts from what the
focus of ground station software should be –
providing the user with the correct tools to do what
needs to be done in order to use and maintain a
satellite in orbit.

Implementation

Now that the high-level design and goals have been
revealed, the low-level details of the software must
be clarified. The software will be coded in Ruby and
utilize MySQL for database functions. The program
will be modular in design. This will, as is typical,
mean that modifying one piece of code affects a
very small amount of other code. Where this design
differs from others is that no re-compilation is
necessary, since the code is interpreted. The
source files must be available to run the program, so
the source will also have one hundred percent
accessibility, which aids in the ability to modify the
code. In addition, because of language-specific
features, items can even be modified at the object
level without too much hassle. The new software
will be best described as a loosely coupled system
while being strongly modular. The software is
loosely coupled because the modules can access
only their own data and are aware of only data given
to them from other modules. They cannot
haphazardly access data from other modules. The
modules may be called “strong” because each
module has a very narrow andspecific function, as

opposed to a weak module. This follows object-
oriented principles also, such that each module will
most nearly contain only one class. Each class or
module has the goal of being specific and narrow.
Here are some of the key modules and a brief
description of each:

GUI Front End Application – This is the client
which allows the user access to all of the ground
station’s software features. It is presented as a
GUI application.

Input Handler – The input handler and message
dispatcher handles all user input from the GUI
application and dispatches it to the corresponding
module. Modules are thus unaware of irrelevant
input and only the necessary modules are sent
messages.

Scheduler – The scheduler handles multiple tasks
and is broken down into sub-modules. First, the
scheduler executes schedules at a specified time.
Second, the scheduler creates schedules through the
use of the GUI application and stores them in the
database.

Tracker – The tracker is responsible for predicting
passes and communication time for the satellite with
which the user is communicating.

Logger – The logger logs all station activity for future
reference and review.

Visualizer – The visualizer is the part of the ground
station software which displays satellite data through
various controls and widgets.

Global Journal of Enterprise Information System January-June 2012

 Volume-4 Issue-I

Empirical ArticleEmpirical ArticleEmpirical ArticleEmpirical Article

Ground Station Software: A Dynamic and Scripted Approach Page 9

Of course, the above diagram is very simplified.
These components are those most exposed to the
user, though sometimes the user does not realize it.
Other components exist and will be used behind the
scenes as inherited classes, for example. One
instance of this is the messaging system. Each
component needs to be able to send and process
messages, so it is logical for each module to contain
an instance of the message system class. This is
not shown on the diagram because it is in a level
below the components mentioned.

As mentioned, each of the components of the
ground station in the diagram communicates with
the others through a standard messaging interface.
These messages are sent from the originating
module to the message server, which then
dispatches them to the appropriate destination
module. In this way, the code is easily modified to fit
the needs of an individual station. The developer for
the station which needs modification has multiple
options: 1) Modify the existing modules, 2) modify
the message sending functions to redirect messages
to a custom module, or 3) create entirely new
modules which send messages appropriately and
are therefore integrated into the existing structure
seamlessly and with little effort. Because of the
interpreted nature of the source, developing, testing,
and debugging are incredibly quick and simple. The
developer can modify multiple modules in seconds,
without recompiling or any other overhead.

CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION

A quick search of scholarly resources will prove that
many different projects, especially at the university
level, work toward the result of creating ground
station software. These projects are nearly all the
same, so none of them has succeeded. There is
hardly a mention in any of these projects of other
software, proving that there is no consideration of
what has been done and has been proven to not
work. With an extensible application like the one
detailed in this paper, future projects can focus on
extending the capabilities of ground stations instead
of rewriting the same software with a different name.
Additionally, new functionality which they might
desire will be easily added to software as dynamic
as the one described above.

REFERENCESREFERENCESREFERENCESREFERENCES

i. Tuli, T., Orr, N., and Zee, R., “Low cost station
design for nanosatellite missions,” University of
Toronto Institute for Aerospace Studies Space
Flight Laboratory, 2006.

ii. Cutler, J., and Fox, A., “A Framework for robust

and flexible ground station networks,” Stanford
University.

iii. Shirville, G., and Klofas, B., “GENSO: A global

ground station network,” AMSAT Symposium,
October 2007.

iv. Jackson, C., and Lawrence, J., “Distributed

operation of a military research microsatellite
using the internet,” American Institute of
Aeronautics and Astronautics.

v. Bernier, S., and Barbeau, M., “A virtual ground

station based on distributed components for
satellite communications,” Small Satellite
Conference, 2001.

.

http://ejournal.co.in/gjeis

