
27

Software Reliability Metrics
R. C. Tripathi1*

1*Associate Prof. Institute of Management Studies, IMS - Noida, UP; ramesh_c_tripathi@yahoo.co.in

Abstract

Software Reliability is the probability of failure-free software operation for a specified period of time in a specified environment.
Software Reliability is also an important factor affecting system reliability. It differs from hardware reliability in that it reflects
the design perfection, rather than manufacturing perfection. The high complexity of software is the major contributing factor of
Software Reliability problems. Software Reliability is not a function of time, although researchers have come up with models relat-
ing the two. The modeling technique for Software Reliability is reaching its prosperity, but before using the technique, we must
carefully select the appropriate model that can best suit our case. Measurement in software is still in its infancy. No good quantita-
tive methods have been developed to represent Software Reliability without excessive limitations. Various approaches can be used
to improve the reliability of software, however, it is hard to balance development time and budget with software reliability.
Keywords: software components, component based software engineering, component-based development, Interaction
Constraints (ICs)

* Address for correspondence:

R. C. Tripathi
Associate Prof. Institute of Management Studies, IMS - Noida, UP.

ramesh_c_tripathi@yahoo.co.in

1.  Definitions
According to American National Standard Institute, (ANSI)
Software Reliability is defined as: the probability of failure-free
software operation for a specified period of time in a speci-
fied environment. Although Software Reliability is defined as a
probabilistic function, and comes with the notion of time, we
must note that, different from traditional Hardware Reliability,
Software Reliability is not a direct function of time. Electronic
and mechanical parts may become “old” and wear out with time
and usage, but software will not rust or wear-out during its life
cycle. Software will not change over time unless intentionally
changed or upgraded.

Software Reliability is an important to attribute of software
quality, together with functionality, usability, performance,
serviceability, capability, installability, maintainability, and docu-
mentation (Wu, Zhong & Zhu, 2010). Software Reliability is hard
to achieve, because the complexity of software tends to be high.
While any system with a high degree of complexity, including
software, will be hard to reach a certain level of reliability, system
developers tend to push complexity into the software layer, with
the rapid growth of system size and ease of doing so by upgrad-
ing the software. For example, large next-generation aircraft will

have over one million source lines of software on-board; next-
generation air traffic control systems will contain between one
and two million lines; the upcoming international space station
will have over two million lines on-board and over ten million
lines of ground support software; several major life-critical defense
systems will have over five million source lines of software. While
the complexity of software is inversely related to software reli-
ability, it is directly related to other important factors in software
quality, especially functionality, capability, etc. Emphasizing these
features will tend to add more complexity to software.

“Using these definitions, software reliability is comprised of three
activities:

1.	 Error prevention
2.	 Fault detection and removal
3.	 Measurements to maximize reliability, specifically measures

that support the first two activities

There has been extensive work in measuring reliability using
mean time between failure and mean time to failure. These activ-
ities address the first and third aspects of reliability, identifying
and removing faults so that the software works as expected with
the specified reliability.

Global Journal of Enterprise Information System
G J E I S

28

Software Reliability Metrics

Vol 5 | Issue 1 | January-June 2013 | www.gjeis.org GJEIS | Print ISSN: 0975-153X | Online ISSN: 0975-1432

2.  Software Life Cycle for
Reliability
Software reliability, however, does not show the same character-
istics similar as hardware. A possible curve is shown in figure 2
if we projected software reliability on the same axes. There are
two major differences between hardware and software curves.
One difference is that in the last phase, software does not have
an increasing failure rate as hardware does. In this phase, soft-
ware is approaching obsolescence; there are no motivations for
any upgrades or changes to the software. Therefore, the failure
rate will not change. The second difference is that in the useful-
life phase, software will experience a drastic increase in failure
rate each time an upgrade is made (Alipour & Isazadeh, 2008).
The failure rate levels off gradually, partly because of the defects
found and fixed after the upgrades.

The upgrades in figure 2 imply feature upgrades, not upgrades
for reliability. For feature upgrades, the complexity of software
is likely to be increased, since the functionality of software is
enhanced. Even bug fixes may be a reason for more software
failures, if the bug fix induces other defects into software. For reli-
ability upgrades, it is possible to incur a drop in software failure
rate, if the goal of the upgrade is enhancing software reliability,
such as a redesign or reimplementation of some modules using
better engineering approaches, such as clean-room method.

Focus also must be on the maintainability of the software
since; there will be a “useful life” phase where sustaining engi-
neering will be needed. Therefore, to prevent software errors, we
must:

•	 Start with the requirements, ensuring the product developed
is the one specified, that all requirements clearly and accu-
rately specify the final product functionality

•	 Ensure the code can easily support sustaining engineering
without infusing additional errors

•	 A comprehensive test program that verifies all functionality
stated in the requirements is included

3.  Software Reliability Models and
Measurement
As a major task of fault/failure forecasting, software reliability
modeling has attracted much research attention in estimation
(measuring the current state) as well as prediction (assessing the
future state) of the reliability of a software system. A software
reliability model specifies the form of a random process that
describes the behavior of software failures with respect to time.
There are three main reliability modeling approaches: the error
seeding and tagging approach, the data domain approach, and
the time domain approach, which is considered to be the most
popular one (Kumar & Misra, 2008). The basic principle of time
domain software reliability modeling is to perform curve fitting
of observed time-based failure data by a pre-specified model for-
mula, such that the model can be parameterized with statistical
techniques (such as the Least Square or Maximum Likelihood
methods). The model can then provide estimation of existing
reliability or prediction of future reliability by extrapolation
techniques. Software reliability models usually make a number
of common assumptions, as follows:

1.	 The operation environment where the reliability is to be
measured is the same as the testing environment in which the
reliability model has been parameterized.

2.	 Once a failure occurs, the fault which causes the failure is
immediately removed.

3.	 The fault removal process will not introduce new faults.
4.	 The number of faults inherent in the software and the way

these faults manifest themselves to cause failures follow, at
least in a statistical sense, certain mathematical formulae.
Since the number of faults (as well as the failure rate) of the
software system reduces when the testing progresses, result-
ing in growth of reliability, these models are often called
Software Reliability Growth Models (SRGMs).

It can be seen from figure 1 that there are four major components
in this SRE process, namely

1.	 Reliability objective,
2.	 Operational profile,

2

Figure 1:  Software reliability engineering process overview

29

R. C. Tripathi 	 Theme Based Paper

Vol 5 | Issue 1 | January-June 2013 | www.gjeis.org GJEIS | Print ISSN: 0975-153X | Online ISSN: 0975-1432

3.	 Reliability modeling and measurement, and
4.	 Reliability validation.

A reliability objective is the specification of the reliability goal
of a product from the customer viewpoint. If a reliability objec-
tive has been specified by the customer, that reliability objective
should be used. Otherwise, we can select the reliability meas-
ure which is the most intuitive and easily understood, and then
determine the customer’s “tolerance threshold” for system fail-
ures in terms of this reliability measure (Alvaro, de Almeida, &
de Lemos Meira, 2005). The operational profile is a set of disjoint
alternatives of system operational scenarios and their associated
probabilities of occurrence.

The construction of an operational profile encourages test-
ers to select test cases according to the system’s likely operational
usage, which contributes to more accurate estimation of soft-
ware reliability in the field. Reliability modeling is an essential
element of the reliability estimation process. It determines
whether a product meets its reliability objective and is ready for
release. One or more reliability models are employed to calculate,
from failure data collected during system testing, various esti-
mates of a product’s reliability as a function of test time. Several
interdependent estimates can be obtained to make equivalent
statements about a product’s reliability. These reliability estimates
can provide the following information, which is useful for prod-
uct quality management: (1) The reliability of the product at the
end of system testing. (2) The amount of (additional) test time
required to reach the product’s reliability objective. (3) The reli-
ability growth as a result of testing (e.g., the ratio of the value of
the failure intensity at the start of testing to the value at the end of
testing). (4) The predicted reliability beyond the system testing,
such as the product’s reliability in the field. Despite the existence
of a large number of models, the problem of model selection and
application is manageable, as there are guidelines and statistical
methods for selecting an appropriate model for each application.
Furthermore, experience has shown that it is sufficient to con-
sider only a dozen models, particularly when they are already
implemented in software tools.

Using these statistical methods, “best” estimates of reli-
ability are obtained during testing (Alvaro, de Almeida, & de

Lemos Meira, 2005). These estimates are then used to project
the reliability during field operation in order to determine
whether the reliability objective has been met. This procedure
is an iterative process, since more testing will be needed if the
objective is not met.

A test compression factor is defined as the ratio of execu-
tion time required in the operational phase to execution time
required in the test phase to cover the input space of the pro-
gram. Since testers during testing are quickly searching through
the input space for both normal and difficult execution condi-
tions, while users during operation only execute the software
with a regular pace, this factor represents the reduction of failure
rate (or increase in reliability) during operation with respect to
that observed during testing.

Finally, the projected field reliability has to be validated by
comparing it with the observed field reliability.

This validation not only establishes benchmarks and con-
fidence levels of the reliability estimates, but also provides
feedback to the SRE process for continuous improvement and
better parameter tuning (Crnkovic, Larsson, & Chaudron,
2004). When feedback is provided, SRE process enhancement
comes naturally: the model validity is established, the growth
of reliability is determined, and the test compression factor is
refined.

4.  Software Reliability Prediction
Models and Estimation
A proliferation of software reliability models have emerged as
people try to understand the characteristics of how and why
software fails, and try to quantify software reliability. As many
models as there are and many more emerging, none of the mod-
els can capture a satisfying amount of the complexity of software;
constraints and assumptions have to be made for the quantifying
process.

Therefore, there is no single model that can be used in all
situations. No model is complete or even representative. One
model may work well for a set of certain software, but may be
completely off track for other kinds of problems. Most software
models contain the following parts: assumptions, factors, and a
mathematical function that relates the reliability with the factors
(Aggarwal & Singh, 2005). The mathematical function is usually
higher order exponential or logarithmic.

Software modeling techniques can be divided into two
subcategories: prediction modeling and estimation modeling.
Both kinds of modeling techniques are based on observing and
accumulating failure data and analyzing with statistical infer-
ence. The major differences of the two models are shown in
table 1.

4

Figure 2:  Failure rate

30

Software Reliability Metrics

Vol 5 | Issue 1 | January-June 2013 | www.gjeis.org GJEIS | Print ISSN: 0975-153X | Online ISSN: 0975-1432

Table 1:  Difference between Software Reliability Prediction
Models Estimation Models

Issues Prediction models Estimation models
Data reference Uses historical data Uses data from the

current software
development effort

When used in
development cycle Usually made prior to

development or test
phases; can be used as
early as concept phase

Usually made later
in life cycle(after
some data have
been collected);
not typically used
in concept or
development phases

Time frame Predict reliability at
some future time

Estimate reliability
at either present or
some future time

Representative prediction models include Musa’s Execution
Time Model, Putnam’s Model and Rome Laboratory models
TR-92-51 and TR-92-15, etc. Using prediction models, software
reliability can be predicted early in the development phase
and enhancements can be initiated to improve the reliability
(Rodrigues, Roshenblum, & Sebastian, 2005). Representative
estimation models include exponential distribution models,
Weibull distribution model, Thompson and Chelson’s model, etc.
Exponential models and Weibull distribution model are usually
named as classical fault count/fault rate estimation models, while
Thompson and Chelson’s model belong to Bayesian fault rate
estimation models.

The field has matured to the point that software models
can be applied in practical situations and give meaningful
results and, second, that there is no one model that is best
in all situations. Because of the complexity of software, any
model has to have extra assumptions. Only limited factors
can be put into consideration. Most software reliability mod-
els ignore the software development process and focus on the
results—the observed faults and/or failures. By doing so, com-
plexity is reduced and abstraction is achieved, however, the
models tend to specialize to be applied to only a portion of
the situations and a certain class of the problems. We have to
carefully choose the right model that suits our specific case.
Furthermore, the modeling results can not be blindly believed
and applied.

5.  Conclusion
Software reliability is a key part in software quality. The study of
software reliability can be categorized into three parts: modeling,
measurement and improvement. Software reliability modeling
has matured to the point that meaningful results can be obtained
by applying suitable models to the problem. There are many mod-
els exist, but no single model can capture a necessary amount of
the software characteristics. Assumptions and abstractions must
be made to simplify the problem. There is no single model that is
universal to all the situations.

Metrics to measure software reliability do exist and can be
used starting in the requirements phase. At each phase of the
development life cycle, metrics can identify potential areas of
problems that may lead to problems or errors. Finding these areas
in the phase they are developed decreases the cost and prevents
potential ripple effects from the changes, later in the develop-
ment life cycle.

References
Aggarwal, K. K., & Singh, Y. (2005). Software Engineering, (2nd ed.).

New Age International.
Alipour, H., & Isazadeh, A. (2008). A Software reliability assessment

based on a formal requirements specification. Conference on Human
System Interactions, 311–316.

Alvaro, A., de Almeida, E. S., & de Lemos Meira, S. R. (2005).
Software component certification: A survey. Proceedings of the 31st
EUROMICRO Conference on Software Engineering and Advanced
Applications (EUROMICRO-SEAA’05) IEEE 2005, 106–113.

Crnkovic, I., Larsson, S., & Chaudron, M. (2004). Component-based
development process and component lifecycle. IEEE Transaction on
Software Engineering, 44.

Kumar, S.K., Misra, R.B. (2008). An enhanced model for early software
reliability prediction using software engineering metrics. Second
International Conference on Secure System Integration and Reliability
Improvement, SSIRI ’08, 177–178.

Rodrigues, G. N., Roshenblum, D. S. & Sebastian, U. (2005). Sensitivity
analysis for a scenario – based Reliability prediction Model.
Proceedings ICSE 2005 Workshop on Architecting Dependable Systems,
73–77, ACM Press: USA.

Wu, H. L., Zhong, Y., & Zhu, H. D. (2010). Construct operation model
based on process dababase for software reliability prediction. The
2nd IEEE International Conference on Information Management and
Engineering (ICIME), 190–193.

