
Global Journal of Enterprise Information System
G J E I S

Biologically Inspired Computing Technique for Optimizing
Discontinuous Mathematical Functions
Sanjay Agrawal1*, Pooja Tiwari2

1*School of Engineering & Technology, IGNOU, New Delhi-110068; sanjay.agrawal@ignou.ac.in
2Gyan Vihar University, Jaipur; pooja.tiwari03@gmail.com

Abstract

This paper explores the immense capabilities of the recently proposed biologically inspired soft computing technique named
Particle Swarm Optimization for the optimization of non-convex, nonlinear and discontinuous mathematical functions; which pri-
marily focus upon the attainment of the global optimum, despite of the existence of local multi-optimums in the vicinity. This
technique uses an innovative distributed intelligent paradigm for solving optimization problems that originally took its inspiration
from the biological examples like bird flocking and fish schooling. This is also a population-based optimization tool, which could be
implemented and applied easily to solve various function optimization problems. But unlike Genetic Algorithm it uses only primi-
tive mathematical operator and does not uses cross-over, mutation and reproduction. Potential of this technique is illustrated by
implementing it on the well known bench mark mathematical problems which includes Rastrigins, Ackley, Alpine, and Schaffer’s
F6 functions.
Keywords: biological, genetic algorithm, PSO

1.  Introduction
In few last years, it has been observed that optimization algo-
rithms is not only very attractive by the research group but also
by the person from industrial side. In the field of evolution-
ary computation (EC), inspiration for optimization algorithms
basically comes in Darwin’s ideas of evolution and survival of
the fittest. This type of technique is usefull for an evolutionary
proces. This is required where the purpse is to find out the answer
solutions with help of of crossover, mutation, and selection which
is dependenet on their quality wrt to the optimization problem.
Evolutionary technique are very useful to solve the problen which
is related to organization where industrial products come in pic-
ture, this is due that they have idea to solve such type of problem
with non-linear limitation or restriction, different type of aims,
and dynamic components-charaterstics that frequently comes in
real world. This paper introduces such an algorithm called PSO
and demonstrates its potential on real-world mathematical prob-
lems.

Swarm Intelligence (SI) is a new idea to produce distrib-
uted intelligent model for solving optimization problems that
starts its a good idea from the biological examples by swarm-
ing, flocking and herding phenomena in vertebrates (Eberhart
& Kennedy, 1995; Kennedy & Eberhart, 1995; Parsopoulos &

Vrahatis, 2001). Particle swarm optimization has two meth-
odologies. It may be more obvious are its ties to artificial life
in general, and to bird flocking, fish schooling, and swarming
theory in particular (Parsopoulos & Vrahatis, 2002; Eberhart &
Hu, 1999).

It is also related, however, to evolutionary computation, and
has ties to both genetic technique and evolutionary program-
ming (Shi & Eberhart, 1998; Lis & Eiben, 1996). The initial ideas
of James Kennedy (a social psychologist) and Russel Eberhart
(an engineer and computer scientist) were essentially aimed at
producing computational intelligence by exploiting simple ana-
logues of social interaction (Zitzler, Deb, & Thiele, 1999)., rather
than purely individual cognitive abilities. Their simulations were
influenced by Heppner’s works, which involve analogues of bird
flocks searching for corn.

Swarm system is a rich source of novel computational meth-
ods that can solve difficult problems efficiently and reliably. When
swarms solve problems in nature, their abilities are usually attributed
to swarm intelligence; perhaps the best-known examples are colonies
of social insects such as termites, bees and ants. One of the best-de-
veloped techniques of this type is Particle Swarm Optimization.

For applying PSO successfully, one of the key issues is finding
how to map the problem solution into the PSO particle, which
directly affects its feasibility and performance.

* Address for correspondence:

Sanjay Agrawal
School of Engineering & Technology, IGNOU, New Delhi-110068

sanjay.agrawal@ignou.ac.in

19

Sanjay Agrawal, Pooja Tiwari� Empirical Article

Vol 5 | Issue 2 | July-December 2013 | www.gjeis.org GJEIS | Print ISSN: 0975-153X | Online ISSN: 0975-1432

2.  Particle Swarm Optimization

2.1  Swarms and Particles
This particular term i.e. swarm is used in accordance with a
paper by Millonas. He articulated five basic principles of swarm
intelligence:

a)  Proximity principle
b)  Quality principle
c)  Diverse response
d)  Principle of stability
e)  Principle of adaptability

The principles four and five are the opposite sides of the same
coin. The particle swarm optimization concept and paradigm
presented in this paper seem to adhere to all five principles.

2.2  Overview of PSO Technique
The algorithm of PSO is initialized with a population of
random solutions, called ‘particles’. Each particle in PSO flies
through the search space with a velocity that is dynamically
adjusted according to its own and its companion’s historical
behaviors. The particles have a tendency to fly toward bet-
ter search areas over the course of a search process. During
flight, each particle keeps track of its coordinates in the prob-
lem space, which are associated with the best solution (fitness)
it has achieved so far. (The fitness value is also stored.) This
value is called ‘pbest’. Another ‘best’ value that is tracked by
the particle swarm optimizer is the best value, obtained so
far by any particle in the neighbors of the particle. This loca-
tion is called ‘lbest’. When a particle takes all the population
as its topological neighbors, the best value is a global best
and is called ‘gbest’. The particle swarm optimization concept
consists of, at each time step, changing the velocity of (acceler-
ating) each particle toward its pbest and lbest locations (local
version of PSO). Acceleration is weighted by a random term,
with separate random numbers being generated for accelera-
tion toward pbest and lbest locations.

Each particle tries to modify its position using the concept of
velocity. The velocity of each agent can be updated by the follow-
ing equation:

1
1 1 ()k k k

i i i iv v rand pbest sw y+ = + × − + 2 2 ()k
i irand gbest sy × −

� (1)
where 1k

iv + is velocity of agent i at iteration k, w is weighting
function, ψ1 and ψ2 are weighting factors, rand1 and rand2 are
random numbers between 0 and 1, k

is is current position of
agent i at iteration k, pbesti is the pbest of agent i, and gbest

is the best value so far in the group among the pbests of all
agents.

The following weighting function is usually used:

	 () ()()max max min max/ iter iterw w w w= − − ×
�

(2)

Where, wmax is the initial weight, wmin is the final weight,
itermax is the maximum iteration number, and iter is the cur-
rent iteration number. Using the previous equations, a certain
velocity, which gradually brings the agents close to pbest and
gbest, can be calculated. The current position (search point
in the solution space) can be modified by the following
equation:

	
1 1k k k

i i is s v+ += + � (3)

2.3  Algorithm for Particle Swarm Optimization

  1. � Initialize the size of the particle swarm n, and other param-
eters.

  2. � Initialize the positions xi

and the velocities vi

for all the par-

ticles randomly.
  3.  While (the end criterion is not met) do:
  4.  Calculate the fitness value of each particle;
  5. � Update pBest, (If fitness value is better than the best fitness

value (pBest) in past, set current value as the new pBest).
  6. � Update gBest, by choosing the particle with the best fitness

value of all the particles as the gBest
  7.  For i=1 to n;
  8.  Calculate particle velocity according to equation (1).
  9.  Update particle position according to equation (3).
10.  Next i.
11.  End While.

Flowchart for PSO algorithm is shown in figure 1

2.4  Parameters of PSO
The role of inertia weight ω, in Eq. (2), is considered critical for
the convergence behavior of PSO. The inertia weight is employed
to control the impact of the previous history of velocities on
the current one. Accordingly, the parameter ω regulates the
tradeoff between the global (wide-ranging) and local (nearby)
exploration abilities of the swarm. A suitable value for the iner-
tia weight ω usually provides balance between global and local
exploration abilities and consequently results in a reduction of
the number of iterations required to locate the optimum solu-
tion. Initially, the inertia weight is set as a constant. However,

20

Biologically Inspired Computing Technique for Optimizing Discontinuous Mathematical Functions

Vol 5 | Issue 2 | July-December 2013 | www.gjeis.org GJEIS | Print ISSN: 0975-153X | Online ISSN: 0975-1432

some experiment results indicates that it is better to initially set
the inertia to a large value, in order to promote global explora-
tion of the search space, and gradually decrease it to get more
refined solutions.

The parameters ψ1

and ψ2, in Eq. (2), are not critical for the

convergence of PSO. However, proper fine-tuning may result in
faster convergence and alleviation of local minima. As default
values, usually, ψ1 = ψ2 = 2 is used, but some experiment results
indicate that ψ1 = ψ2= 1.49 might provide even better results.
Recent work reports that it might be even better to choose a
larger cognitive parameter, ψ1

than a social parameter, ψ2

but with

ψ1 +ψ2 ≤4.

2.5  Boundary Conditions
Often in engineering applications it is desirable to limit the
search to what is physically possible. Experience has shown that,
constriction factors, and inertial weights do not always confine
the particles within the solution space. To address this problem,
the authors have imposed three different boundary conditions as
shown in figure 2.

1)  Absorbing Walls: When a particle hits the boundary of the
solution space in one of the dimensions, the velocity in
that dimension is zeroed, and the particle will eventually
be pulled back toward the allowed solution space. In this
sense the boundary “walls” absorb the energy of particles try-
ing to escape the solution space.

2) � Reflecting Walls: When a particle hits the boundary in one of
the dimensions, the sign of the velocity in that dimension is
changed and the particle is reflected back toward the solution
space.

3)  Invisible Walls: The particles are allowed to fly without any
physical restriction. However, particles that roam outside the
allowed solution space are not evaluated for fitness.

For nearly all-engineering applications, the computationally
expensive portion of the algorithm is the fitness evaluation. The
motivation behind this technique is to save computation time
by only evaluating what is in the allowed solution space, while
not interfering with the natural motion of the swarm. The results
show that the “invisible walls” technique proves slightly better
than other techniques.

2.6  End Criteria
There are several methods to determine the termination crite-
ria. Various methods have been used by the various researchers;
most common methods are listed below.

a)  Maximum Number of Iteration: With this termination con-
dition, the PSO ends when the process has been repeated a
user-defined number of times. Although, the best result is not
guaranteed, but this method is used most of the times. The
reason is its simplicity and generality.

b)  Number of Iterations without Improvement: In this case the
optimization process is terminated after some fixed number
of iterations if any improvement is not obtained. The number
decided should be such that case of particles being trapped in
local maxima (or minima) is eliminated.

Figure 1.  Flow chart for proposed PSO method

 Start

Initialize swarm size, initial velocity, particle
position and other parameters in the feasible

region

Calculate fitness value of each particle

Set Iteration Counter

If
Fitness

Satisfactory

Yes

Update Pbest and Gbest

Update Position and velocity using Eq. 3 and 1
respectively

If
Stopping

criteria met No

No

STOP

Yes

Figure 2.  Boundary conditions for swarms

21

Sanjay Agrawal, Pooja Tiwari� Empirical Article

Vol 5 | Issue 2 | July-December 2013 | www.gjeis.org GJEIS | Print ISSN: 0975-153X | Online ISSN: 0975-1432

c)  Minimum Objective Function Error: The optimization proc-
ess is terminated if the error between the obtained objective
function value and the best fitness value (target value) is less
than a prefixed threshold. At any time if a solution is found
that is greater than or equal to the target fitness value, then
the PSO is stopped at that point. This is useful when one has a
very specific engineering goal for the value of the fitness func-
tion, and is not necessarily concerned with finding the “best”
solution. In some cases if a solution is found to be better than
the target fitness, then the solution is good enough and there
is no reason to continue to run.

3.  Simulation Results
We need to build fitness function, which uses the program being
evaluated as the function in a PSO, and evaluates the perform-
ance of the resulting PSO on a training set of problems taken
from the given class.

3.1  BenchMark Functions
This technique is tested on functions with many local minima
like Ackley function, Rastrigin’s function, Alpine function and
Schaffer’s F6 function.

3.1.1  Ackley Function F1 (Minimization)

1 1220 20 exp 0.2 exp cos(2)
1 1

n n
e x xi in ni i

p
 
 + − − −∑ ∑
 = = 

where, –10≤xi≤10
Figure 3 and 4 shows the Ackely function and PSO conver-

gence during iterative runs.

3.1.2  Alpine Function

1 1

0.1 (sin)
n n

i i i
i i

x abs x x
= =

+∑ ∑ where, –10≤xi≤10

Figure 5 and 6 shows alpine function and its convergence.

3.1.3  Schaffer Function F6 (Minimization)

()
()()

2 2 2
1 2

2
2 2
1 2

sin 0.5
0.5

1.0 0.001

x x

x x

+ −
+

+ +
 where, –100≤xi≤100

Figure 7 and 8 shows Schaffer function and its convergence.

3.1.4  Rastrigin function F1 (Minimization)

()2

1

10 cos(2) 10
n

i i
i

x xp
=

− +∑ where, –5.15≤xi≤5.12

Figure 3.  Ackley Function plot in 3-dimensions

Figure 4.  Swarm Convergence during iterative run for
Ackley

0 20 40 60 80 100 120 140 160 180 200
0.5

1

1.5

2

2.5

3

3.5

4

Generation

Fi
tn

es
s

va
lu

e

Best: 0.69546 Mean: 0.70415

Best f itness
Mean fitness

Figure 5.  Alpine function plot in 3-dimensions

22

Biologically Inspired Computing Technique for Optimizing Discontinuous Mathematical Functions

Vol 5 | Issue 2 | July-December 2013 | www.gjeis.org GJEIS | Print ISSN: 0975-153X | Online ISSN: 0975-1432

Figure 6.  Swarm Convergence during iterative run for
Alpine.

0 20 40 60 80 100 120 140 160 180 200
0.5

1

1.5

2

2.5

3

3.5

4

Generation

Fi
tn

es
s

va
lu

e

Best: 0.69546 Mean: 0.70415

Best f itness
Mean fitness

Figure 7.  Schaffer Function F6 in 3-dimension.

Figure 9 and 10 shows Rastrigins function and its conver-
gence using PSO minimization Technique.

Numerical simulations show that the proposed algorithm is
very effective to deal with the multi objective optimization prob-
lems.

It is not the case in the proposed algorithm, only a small pop-
ulation size is needed to obtain the desired results. In addition,
the proposed algorithm can be understood and performed easily
because there is no operation such as ‘crossover” and “mutation”
used in other evolutionary algorithms solving multi-objection
problems.

References
Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle

swarm theory. Proceedings of the Sixth International Symposium on
Micro Machine and Human Science, 39–43.

Figure 8.  Swarm Convergence during iterative run for
Schaffer F6.

0 20 40 60 80 100 120 140 160 180 200
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generation

Fi
tn

es
s

va
lu

e

Best: -0.004994 Mean: -0.0049495

Best f itness
Mean fitness

Figure 9.  Rastrigin function plot in 3-dimensions.

Figure 10.  Swarm Convergence during iterative run for
Rastrigin.

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Generation

Fi
tn

es
s

va
lu

e

Best: 8.8249e-007 Mean: 4.0757e-006

Best f itness
Mean fitness

23

Sanjay Agrawal, Pooja Tiwari� Empirical Article

Vol 5 | Issue 2 | July-December 2013 | www.gjeis.org GJEIS | Print ISSN: 0975-153X | Online ISSN: 0975-1432

Eberhart, R. C., & Hu, X. (1999). Human tremor analysis using particle
swarm optimization. Proceedings of the IEEE Congress on Evolutionary
Computation (CEC 1999). 1927–1930.

Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. IEEE
International Conference on Neural Networks (Perth, Australia), 4,
1942–1948.

Lis, J., & Eiben, A. E. (1996). A multi-sexual genetic algorithm for
multiobjective optimization. Proceedings of the 1996 International
Conference on Evolutionary Computation, 59–64.

Parsopoulos, K. E., & Vrahatis, M. N. (2001). Particle Swam Optimizer
in Noisy and Continuously Changing Environments. In Hamza,
M.H. (Ed.). Artificial intelligence and soft computing (pp. 289–294).
IASTED/ACTA Press.

Parsopoulos, K. E., & Vrahatis, M. N. (2002). Particle swarm optimiza-
tion method for ‘constrained optimization problems. Proceedings of
the Euro-International Symposium on Computational Intelligence,
214–220.

Shi, Y., & Eberhart, R. (1998). A Modified Particle Swarm Optimizer.
IEEE International Conference on Evolutionary Computation.
69–73.

Zitzler, E., Deb, K., & Thiele, L. (1999). Comparison of Multi Objective
Evolutionary Algorithms: Empirical Results (Tech. Rep. 70).
Computer Engineering and Networks Laboratory (TIK), Swiss
Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35,
CH-8092 Zurich, Switzerland.

