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Abstract

This paper explores the immense capabilities of the recently proposed biologically inspired soft computing technique named 
Particle Swarm Optimization for the optimization of non-convex, nonlinear and discontinuous mathematical functions; which pri-
marily focus upon the attainment of the global optimum, despite of the existence of local multi-optimums in the vicinity. This 
technique uses an innovative distributed intelligent paradigm for solving optimization problems that originally took its inspiration 
from the biological examples like bird flocking and fish schooling. This is also a population-based optimization tool, which could be 
implemented and applied easily to solve various function optimization problems. But unlike Genetic Algorithm it uses only primi-
tive mathematical operator and does not uses cross-over, mutation and reproduction. Potential of this technique is illustrated by 
implementing it on the well known bench mark mathematical problems which includes Rastrigins, Ackley, Alpine, and Schaffer’s 
F6 functions. 
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1.  Introduction
In few last years, it has been observed that optimization algo-
rithms is not only very attractive by the research group  but also 
by  the  person from industrial side. In the field of evolution-
ary computation (EC), inspiration for optimization algorithms 
basically comes in Darwin’s ideas of evolution and survival of 
the fittest. This type of technique is usefull for an evolutionary 
proces. This is required where the purpse is to find out the answer  
solutions with help of of crossover, mutation, and selection which 
is dependenet on their quality wrt to the optimization problem. 
Evolutionary technique are very useful to solve the problen which 
is related to organization where industrial products come in pic-
ture, this is due that  they have idea to solve such type of problem 
with non-linear  limitation or restriction, different type of aims, 
and dynamic components-charaterstics that frequently comes in 
real world. This paper introduces such an algorithm called PSO 
and demonstrates its potential on real-world mathematical prob-
lems.

Swarm Intelligence (SI) is a new idea to produce distrib-
uted intelligent model for solving optimization problems that 
starts its a good idea from the biological examples by swarm-
ing, flocking and herding phenomena in vertebrates (Eberhart 
& Kennedy, 1995; Kennedy & Eberhart, 1995; Parsopoulos & 

Vrahatis, 2001). Particle swarm optimization has two meth-
odologies. It may be more obvious are its ties to artificial life 
in general, and to bird flocking, fish schooling, and swarming 
theory in particular (Parsopoulos & Vrahatis, 2002; Eberhart & 
Hu, 1999).

It is also related, however, to evolutionary computation, and 
has ties to both genetic technique and evolutionary program-
ming (Shi & Eberhart, 1998; Lis & Eiben, 1996). The initial ideas 
of James Kennedy (a social psychologist) and Russel Eberhart 
(an engineer and computer scientist) were essentially aimed at 
producing computational intelligence by exploiting simple ana-
logues of social interaction (Zitzler, Deb, & Thiele, 1999)., rather 
than purely individual cognitive abilities. Their simulations were 
influenced by Heppner’s works, which involve analogues of bird 
flocks searching for corn. 

Swarm system is a rich source of novel computational meth-
ods that can solve difficult problems efficiently and reliably. When 
swarms solve problems in nature, their abilities are usually attributed 
to swarm intelligence; perhaps the best-known examples are colonies 
of social insects such as termites, bees and ants. One of the best-de-
veloped techniques of this type is Particle Swarm Optimization.

For applying PSO successfully, one of the key issues is finding 
how to map the problem solution into the PSO particle, which 
directly affects its feasibility and performance. 
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2.  Particle Swarm Optimization 

2.1  Swarms and Particles
This particular term i.e. swarm is used in accordance with a 
paper by Millonas. He articulated five basic principles of swarm 
intelligence: 

a)  Proximity principle
b)  Quality principle
c)  Diverse response
d)  Principle of stability
e)  Principle of adaptability 

The principles four and five are the opposite sides of the same 
coin. The particle swarm optimization concept and paradigm 
presented in this paper seem to adhere to all five principles. 

2.2  Overview of PSO Technique
The algorithm of PSO is initialized with a population of  
random solutions, called ‘particles’. Each particle in PSO flies 
through the search space with a velocity that is dynamically 
adjusted according to its own and its companion’s historical 
behaviors. The particles have a tendency to fly toward bet-
ter search areas over the course of a search process. During 
flight, each particle keeps track of its coordinates in the prob-
lem space, which are associated with the best solution (fitness) 
it has achieved so far. (The fitness value is also stored.) This 
value is called ‘pbest’. Another ‘best’ value that is tracked by 
the particle swarm optimizer is the best value, obtained so 
far by any particle in the neighbors of the particle. This loca-
tion is called ‘lbest’. When a particle takes all the population 
as its topological neighbors, the best value is a global best 
and is called ‘gbest’. The particle swarm optimization concept 
consists of, at each time step, changing the velocity of (acceler-
ating) each particle toward its pbest and lbest locations (local 
version of PSO). Acceleration is weighted by a random term, 
with separate random numbers being generated for accelera-
tion toward pbest and lbest locations.

Each particle tries to modify its position using the concept of 
velocity. The velocity of each agent can be updated by the follow-
ing equation:

1
1 1 ( )k k k

i i i iv v rand pbest sw y+ = + × − + 2 2 ( )k
i irand gbest sy × −

� (1)
where 1k

iv +  is velocity of agent i at iteration k, w is weighting 
function, ψ1 and ψ2 are weighting factors, rand1 and rand2 are 
random numbers between 0 and 1, k

is  is current position of 
agent i at iteration k, pbesti is the pbest of agent i, and gbest 

is the best value so far in the group among the pbests of all 
agents.

The following weighting function is usually used:

	 ( ) ( )( )max max min max/ iter iterw w w w= − − ×
�

(2)

Where, wmax is the initial weight, wmin is the final weight,  
itermax is the maximum iteration number, and iter is the cur-
rent iteration number. Using the previous equations, a certain 
velocity, which gradually brings the agents close to pbest and 
gbest, can be calculated. The current position (search point 
in the solution space) can be modified by the following  
equation:

	
1 1k k k

i i is s v+ += + � (3)

2.3  Algorithm for Particle Swarm Optimization 

  1. � Initialize the size of the particle swarm n, and other param-
eters. 

  2. � Initialize the positions xi
 
and the velocities vi

 
for all the par-

ticles randomly. 
  3.  While (the end criterion is not met) do: 
  4.  Calculate the fitness value of each particle; 
  5. � Update pBest, (If fitness value is better than the best fitness 

value (pBest) in past, set current value as the new pBest). 
  6. � Update gBest, by choosing the particle with the best fitness 

value of all the particles as the gBest 
  7.  For i=1 to n; 
  8.  Calculate particle velocity according to equation (1). 
  9.  Update particle position according to equation (3). 
10.  Next i. 
11.  End While. 

Flowchart for PSO algorithm is shown in figure 1

2.4  Parameters of PSO 
The role of inertia weight ω, in Eq. (2), is considered critical for 
the convergence behavior of PSO. The inertia weight is employed 
to control the impact of the previous history of velocities on 
the current one. Accordingly, the parameter ω regulates the 
tradeoff between the global (wide-ranging) and local (nearby) 
exploration abilities of the swarm. A suitable value for the iner-
tia weight ω usually provides balance between global and local 
exploration abilities and consequently results in a reduction of 
the number of iterations required to locate the optimum solu-
tion. Initially, the inertia weight is set as a constant. However, 
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some experiment results indicates that it is better to initially set 
the inertia to a large value, in order to promote global explora-
tion of the search space, and gradually decrease it to get more 
refined solutions. 

The parameters ψ1
 
and ψ2, in Eq. (2), are not critical for the 

convergence of PSO. However, proper fine-tuning may result in 
faster convergence and alleviation of local minima. As default 
values, usually, ψ1 = ψ2 = 2 is used, but some experiment results 
indicate that ψ1 = ψ2= 1.49 might provide even better results. 
Recent work reports that it might be even better to choose a 
larger cognitive parameter, ψ1

 
than a social parameter, ψ2

 
but with 

ψ1 +ψ2 ≤4. 

2.5  Boundary Conditions
Often in engineering applications it is desirable to limit the 
search to what is physically possible. Experience has shown that, 
constriction factors, and inertial weights do not always confine 
the particles within the solution space. To address this problem, 
the authors have imposed three different boundary conditions as 
shown in figure 2.

1)  Absorbing Walls: When a particle hits the boundary of the 
solution space in one of the dimensions, the velocity in 
that dimension is zeroed, and the particle will eventually  
be pulled back toward the allowed solution space. In this 
sense the boundary “walls” absorb the energy of particles try-
ing to escape the solution space.

2) � Reflecting Walls: When a particle hits the boundary in one of 
the dimensions, the sign of the velocity in that dimension is 
changed and the particle is reflected back toward the solution 
space.

3)  Invisible Walls: The particles are allowed to fly without any 
physical restriction. However, particles that roam outside the 
allowed solution space are not evaluated for fitness.

For nearly all-engineering applications, the computationally 
expensive portion of the algorithm is the fitness evaluation. The 
motivation behind this technique is to save computation time 
by only evaluating what is in the allowed solution space, while 
not interfering with the natural motion of the swarm. The results 
show that the “invisible walls” technique proves slightly better 
than other techniques.

2.6  End Criteria
There are several methods to determine the termination crite-
ria. Various methods have been used by the various researchers; 
most common methods are listed below.

a)  Maximum Number of Iteration: With this termination con-
dition, the PSO ends when the process has been repeated a 
user-defined number of times. Although, the best result is not 
guaranteed, but this method is used most of the times. The 
reason is its simplicity and generality.

b)  Number of Iterations without Improvement: In this case the 
optimization process is terminated after some fixed number 
of iterations if any improvement is not obtained. The number 
decided should be such that case of particles being trapped in 
local maxima (or minima) is eliminated.

Figure 1.  Flow chart for proposed PSO method
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Figure 2.  Boundary conditions for swarms
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c)  Minimum Objective Function Error: The optimization proc-
ess is terminated if the error between the obtained objective 
function value and the best fitness value (target value) is less 
than a prefixed threshold. At any time if a solution is found 
that is greater than or equal to the target fitness value, then 
the PSO is stopped at that point. This is useful when one has a 
very specific engineering goal for the value of the fitness func-
tion, and is not necessarily concerned with finding the “best” 
solution. In some cases if a solution is found to be better than 
the target fitness, then the solution is good enough and there 
is no reason to continue to run.

3.  Simulation Results
We need to build fitness function, which uses the program being 
evaluated as the function in a PSO, and evaluates the perform-
ance of the resulting PSO on a training set of problems taken 
from the given class. 

3.1  BenchMark Functions
This technique is tested on functions with many local minima 
like Ackley function, Rastrigin’s function, Alpine function and 
Schaffer’s F6 function. 

3.1.1  Ackley Function F1 (Minimization)
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where, –10≤xi≤10
Figure 3 and 4 shows the Ackely function and PSO conver-

gence during iterative runs.  

3.1.2  Alpine Function
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Figure 5 and 6 shows alpine function and its convergence.

3.1.3  Schaffer Function F6 (Minimization)
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Figure 7 and 8 shows Schaffer function and its convergence.

3.1.4  Rastrigin function F1 (Minimization)

( )2
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Figure 3.  Ackley Function plot in 3-dimensions

Figure 4.  Swarm Convergence during iterative run for 
Ackley

0 20 40 60 80 100 120 140 160 180 200
0.5

1

1.5

2

2.5

3

3.5

4

Generation

Fi
tn

es
s 

va
lu

e

Best: 0.69546 Mean: 0.70415

Best f itness
Mean fitness

 

Figure 5.  Alpine function plot in 3-dimensions
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Figure 6.  Swarm Convergence during iterative run for 
Alpine.
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Figure 7.  Schaffer Function F6 in 3-dimension.

Figure 9 and 10 shows Rastrigins function and its conver-
gence using PSO minimization Technique.

Numerical simulations show that the proposed algorithm is 
very effective to deal with the multi objective optimization prob-
lems.

It is not the case in the proposed algorithm, only a small pop-
ulation size is needed to obtain the desired results. In addition, 
the proposed algorithm can be understood and performed easily 
because there is no operation such as ‘crossover” and “mutation” 
used in other evolutionary algorithms solving multi-objection 
problems.
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Figure 10.  Swarm Convergence during iterative run for 
Rastrigin.
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