
Global Journal of Enterprise Information System
G J E I S

Existence of Equilibria and Complexity of Computation  
in Optimizing Complex Systems
Amer Naim Aladhadh1*, Mamoon Alameen2

1*Ministry of Economy and Commerce; dr.aladadnyc@gmail.com
2The Australian college of Kuwait; m.radiy@ack.edu.kw

Abstract

This paper characterizes the generic properties of interior equilibria in complex systems. The field of complexity has been growing 
and is concerned with the complexity of computation of complex systems. Complex systems are characterized as systems with a 
large number of adaptive interdependent parts. These systems demonstrate several properties including: emergence, where the 
whole does not act as the sum of the parts, and sensitivity to initial conditions. As the number of economic factors increases, the 
recursion of input–output and modeling error propagates. These two particular symptoms of complex systems make them difficult 
to model. Solutions to optimization problems of this sort may have different properties depending on the functional assumptions. 
The generic properties of solutions to these problems can help us have some expectations over the complexity of computation. One 
example of a complex system is the Game Theoretic Interaction between economic agents. The paper also attempts to shed light on 
the complexity of computation of such systems.
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1.  Introduction
The theory of complexity of computations is concerned with 
computational problems and evaluating their solution methods. 
Each method has its benefits and draws backs and is suitable to 
a specific kind of problem. This means that one can examine 
certain problems to determine which method performs best in 
terms of finding an accurate solution in feasible time for a type of 
problem. Problem types, however, need to be very specific for the 
method to perform for all instances of the problem. This poses a 
question: What are the generic properties of a problem and their 
solution sets that can be used to group problems into different 
levels of computational complexity1. For example, a problem that 
has a corner solution generically will not necessarily benefit from 
randomized search or steepest descent methods. This paper aims 
only to shed some light by a demonstrative example that uses sin-
gularity theory developed by Saari and Simone2 to obtain generic 
properties of a solution space for optimization problems com-
mon in the static modeling of complex systems particularly the 
optimization of smooth differentiable functions.

Consider a system of ‘n’ parts all simultaneously optimizing. 
Question arises as to what are the generic properties of the solu-
tion to this particular problem and what are the consequences 
on the burden of computation when searching for it. This is 

often done by examples of particular problems, but they are 
often limited, because the properties of the solution space may 
change if the functional forms of the comprising system changes. 
It is useful to determine whether found properties of a solution 
concept hold good not just for a particular set of functions, but 
rather in general notion of being generic and “holding in gen-
eral” usually means that the property holds for an open and dense 
set of utility functions, or at least for a countable intersection of 
open–dense sets.

The “denseness” condition ensures that it is general; because 
the closure of a dense set is everything, a property holding for a 
dense set is true almost everywhere. This allows us to make these 
generic statements about problems and their solutions.

Saari and Simon2 developed a version of singularity theory 
to analyze the general properties of equilibria in the kinds of 
functions generally used in the social sciences viz, smooth dif-
ferentiable functions. This basic approach is to find a general 
tractable method to describe static solutions of complex systems. 
The singularity theory approach relies on the properties of the 
implicit function theorem i.e., complex system equilibria defined 
by optima that are implicitly defined by the resulting first and 
second order conditions. Recovering the equilibrium strategies 
is essential, but only requires a standard tool, namely, the Inverse 
Function Theorem (IFT).
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To use the IMFT the optima must be defined in terms of 
the Space of Jets. The jet mapping takes a function ‘F’ and maps 
it into a space ‘Jd’ of degree ‘d’. The space ‘Jd’ is a vector space 
that represents the domain, range, and up to ‘F’s dth derivative. 
In jet space, the higher order conditions imposed by the solu-
tion concept shape a surface in Euclidian Space. This surfaces’ 
inverse image is the space of solutions. The inverse function 
theorem is powerful enough to tell us the dimension of the 
equilibrium space. This dimension can then be used to form an 
idea of how challenging the search would be for a solution.

Using this strategy yields an intuition that can be generaliz-
able to classify the complexity of problems and the computation 
of their solutions. For example, the intuition that the number of 
constraints and unknowns will generically determine the dimen-
sion of the solution space is clear.

2.  Jet Space
Consider the mapping F: Rn → Rm, which has ‘n’ variables and 
‘m’ equations fi. Let J1, the associated jet space with first order 
derivatives, be J1 = Rn × Rm × [Rn × Rm]. This can be considered as 
consisting of all possible domain points, all possible images, and 
all possible choices for the derivatives.

∇F = (∇f1, ∇f2, . . . , ∇fm). A given map ‘F’ defines a mapping 
j1(F ): Rn ⊂ J1 in the following natural manner: j1(F )(x) = (x, F 
(x), ∇F (x)). The equilibrium conditions we wish to impose on 
the function, when re–expressed in terms of J1 variables, define 
the manifold Σ ∈ J1. 

To illustrate, suppose we are interested in the critical points of 
functions F: R2 → R1. Here, J1 = ((x, y); z=F(x,y); (A1, A2)), where 
A1 = ∂z/∂x, A2 = ∂z/∂y ∈ R1. Critical point is where the partials 
of the function ‘F’ are zero. The equilibrium conditions can be 
re–expressed as the surface Σ = ((x, y); z; (0, 0)). If we could use 
the implicit function theorem, j(f )−1(Σ) would render all critical 
points of F.

Since, Game Theoretic Analysis is concerned with these spe-
cial points, using jet space to describe optima may be a useful 
strategy.

Jet mapping can be used to transform the given information 
to space, that facilitates analysis key to the strategy. Just as impor-
tant is to be able to take the answers back into the original space. 
This is done through the Inverse Function Theorem.

3.  Inverse Function Theorem
The Inverse Function Theorem states that, if the total derivative 
of a function F: Rn → Rn is invertible at a point x (i.e., the determi-
nant of the Jacobian of F at x is nonzero), and F is continuously 
differentiable near x, then it is an invertible function near x.  

That is, an inverse function to F exists in some neighborhood of 
F(x).

The Jacobian Matrix of F−1 at F (x) is then the inverse of the 
Jacobian of F, evaluated at p. We know that for a smooth mapping 
F: Rn → Rm and x ∈ Rm, then in general and locally F−1(x) is a n–m 
dimensional manifold.

So for n = m, expect F−1(x) to consist of isolated points. 
One can think of this as a system of equations and a number 
of unknowns. Since the number of equation is the same as the 
number of unknowns, one can easily find a unique solution. But, 
if m > n, in general, expect F−1(x) to be empty. Intuitively, this is 
clear because the number of equations is more than the number 
of unknowns. If n > m, expect F−1(x) to consist of n–m dimen-
sional manifolds. It is clear that if the number of unknowns is 
bigger than the number of equations, then a system of equations 
has multiple solutions.

Instead of the inverse image of a point, suppose our interest is 
in the inverse image of a smooth manifold Σ ⊂ Rm of dimension s. 
Here, the rank condition is replaced by a transversality condition. 
Namely, at a point x ∈ Σ, the linear space spanned by the tangent 
space TxΣ and the plane defined by:

∇F (Rn) must have the full dimension ‘m’. This shows as to 
why the results are local around the point of tangency. More 
importantly, the dimensionality of F−1(Σ) is n − [m − s]. Namely, 
the co–dimension of Σ defines the co–dimension of F−1(Σ). In 
other words, given that the transversality conditions are satisfied, 
the inverse function theorem will preserve the co–dimension of 
a smooth manifold.

4.  Generic Transversality

To be precise for any given F, we would need to verify the trans-
versality condition, but, if we are interested only in generic 
conclusions, then we are saved by an important result obtained 
by Thom3. By imposing an appropriate topology on the func-
tions in function space, known as the Whitney Topology, Thom3 
proved for these jet mappings that, generically, either the map-
ping misses the target Σ or it meets it transversely. This means 
that once Σ is defined, if it can be established by some mapping 
that F allows its jet map to be in Σ, then generically the jet map 
meets transversely.
Definition 1: A smooth mapping F: Rk → Rm has a transverse 
intersection with a submanifold Σ of Rm if either (a) Image (F )  
T Σ = φ or (b) the condition of transversality: S pan[DxF (Rn) S 
TyΣ] = Rm is satisfied for each X in F−1.
We can now state Thoms3 theorem.
Theorem 1 (Thom3): Let Σ be a smooth sub–manifold of Rm. 
Generically, a mapping F: Rk → Rm has a transverse intersection 
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with Σ (i.e., this is true for a countable intersection of open dense 
sets in the space of such mappings F).

Consequently, all of the above co–dimension comments are 
established generically. Saari and Simon2 developed singularity 
theory on the space of preferences to analyze the mathematical 
structure of Pareto sets. This paper aims to apply their methodol-
ogy to complex optimizing systems.

5.  System Equilibirium
General system equilibrium in a large system of optimizing inter-
related parts is the solution of simultaneous maximization of 
each function with respect to all ‘k’ inputs. The optimal solution 
for part ‘i’, call it X∗ = argmax, Fj (X j , X−i);  X j = (x j1, . . . , x jk).

System Equilbrium occurs when all ‘n’ parts simultaneously 
optimize. Naturally, maximization imposes second order condi-
tions for the negative definiteness of the Hessian Matrix.

To characterize this equilibrium using jet space, we use the  
J2 = Rnk × Rk × Rnk × [Rnk × Rnk], to write the system of equations 
in terms of the first derivative conditions and second derivative 
conditions.

J2 = (X; Y; A11, A12, . . . , Ank;  B jil) ∀ j, i, l
   (X ∈ Rnk; Y ∈ Rn, A ji ∈ Rnk, B jil ∈ Rnk × Rnk)

           j = 1, 2, ..., n  i, l = 1, 2, . . . , k
                   X T = (X1, X2, . . . , Xn)

X

x x x
x x x

x x x

k

k

n n nk

=












11 12 1

21 22 2

1 2

...

...
.
.
.

.

.

.

.

.

.

.

.

.
...















The matrix of inputs
∇F (X) = (∇F1(X), ∇F2(X). . . ∇Fn(X))

∇ =

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂
Fj (X)

Fj (X)

x

Fj (X)

x
...

Fj (X)

x k
Fj (X)

x

Fj (X)

x

11 12 1

21 222 2

1 2

...
Fj (X)

x k
.
.
.

.

.

.

.

.

.

.

.

.
Fj (X)

xn

Fj (X)

xn
...

Fj (X)

∂

∂

∂

∂

∂

∂

∂

∂xxnk

























Σ2 = {(X; Y; Aji; Bji)  |  Aji = 0, Bji < 0 ∀i, j}� (1)
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Then the co–dimension of Σ2 in the jet space will be ’r’ which is 

the number of closed restrictions in the space of Jets. Consider the 
co–dimension of optimality restrictions implied by the first order 
condition A1, ..., An. There are ‘nk’ restrictions. Given Generic 
Transversality, the Inverse Function Theorem preserves the co–
dimension. By the findings of Saari4, to back out the dimension 
of the equilibrium subspace, we compare the dimension of the 
domain ’nk’ to the co–dimension ’r’ of Σ2 in the jet space J2. 

Since, r = n∗k, the co–dimension of the critical points in strat-
egy space is nk−nk = 0. This means that generically, the interior 
equilibria of a complex optimizing system are isolated points so 
they do not trace a curve.

Theorem 2: For a complex system S(N,F,X), where N is the set 
of optimizing system parts and contains n>1 parts, F is differenti-
able and ∇F (X) = (∇F1(X ), ∇F2(X ), . . . , ∇Fn(X )) and XT = (X1, 
X2, . . . , Xn)) where Xj = [x11, x12, . . . , x1k ], generically, interior 
system equilibria are isolated points and the space of boundary 
solutions is of dimension nk.
Proof 1: d = Dimension of the Input Space Co–dimension (Σ2). 
d = nk − n∗k =0.

Notice that at the boundary points the first and second order 
conditions are not binding. Then the equilibrium subspace, Σ, 
has to be rewritten as: Σ0 = (X ; F (X )) Therefore, dboundary = nk.

In the boundary solution case, there is not a single constraint. 
Consequently, in general, the conditions for boundary point 
solutions can be expected to be (locally) satisfied along some 
collection of curves in Rnk. However, this proves that generically, 
interior system equilibria exists and are isolated points. In other 
words, if X∗ is a critical point for F, then in any sufficiently small 
neighborhood of X∗ there are no other critical points of F (X). 
This also means that imposing any other restrictions may affect 
the existence of the equilibrium.

The next section considers the consequences of this result on 
computation and searching for a solution.

6.  Complexity
In this section the paper will examine both the complexity of 
systems and complexity of computation. Generally speaking, as 
more parts are introduced to the system, and as the number of 
inputs increase, the system becomes more complex. However, 
when concerned with the searching of the solution of the system 
optimization, we can use the results of this paper to give more 
guidance to computational complexity. Computational complex-
ity of optimizing complex system would depend on the search 
space and on the dimension of the solution space.
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If the solution space covers the search space then the prob-
lem is quite simple. If the solution space is a two dimensional 
curve in a large three dimensional search space, then it is the 
proverbial needle in a hay stack. If as in the theorem above, the 
solution space is a point in the search space, then generically it 
is a grain in a haystack. For example, generically in large spaces 
the search time may be long to locate these isolated points 
longer than if the solution space traced a curve for example. 
More importantly, any additional binding restrictions would 
generically jeopardize the existence of the solution meaning 
the search algorithm would be wasting its time searching for 
an interior equilibrium when the right search would be on the 
boundary.

7.  Conclusions
Since much of the research on complexity of computation is 
being done on examples of problems, especially when trying to 
look at P versus NP, the analysis suggests that generic proper-
ties of solutions (for some problems) the number of binding 
constraints may make the solutions space so small compared 
the search space it may lead to large search time. This sug-
gests that computational complexity could be the difference 

between the dimension of the search space and dimension of 
the equilibrium subspace Σ. When d = nk, the complexity of 
computation C(d) = 0. When d is negative, the interior solu-
tion does not exit; then a interior search would take up valuable 
computation time and only ends with the probability depending 
on the number of searched points in the area of the boundary of 
nk−1 dimensions over the total number of searchable points in 
the space of nk dimensions. Likewise, when d > 0, the number 
of points in the solution subspace ∈ Rnk over the number of 
points in the search space of dimension Rnk would be relevant 
to finding a solution.
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