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Abstract

In this paper we will discuss some concrete results of comultiplication modules.
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1.  Introduction
The concept of comultiplication modules was first introduced by 
H. Ansari-Toroghy and Farshadifar4 in 2007. They used the word 
“comultiplication module” to those R-modules M for whom 
every submodule is the annhilator of some ideal of the ring R. 
They defined the comultiplication module by the following way:

An R-module M is called comultiplication module if for 
every submodule N of M , there exists an ideal I of R such that 

N = annM (I).

They also proved that an R-module M is comultiplication 
module if and only if for any submodule N of M , N = (0 :M annR 
(N)). They proved that every proper submodule of a comultipli-
cation module is comultiplication module. However, converse 
may not be true. For example, if V is a two dimensional vector 
space over a field k then V cannot be comultiplication module 
but every proper subspace of V is comultiplication as every one 
dimensional vector space is comultiplication module.

In 2008, Ansari and Farshadifar7, further extended their work 
done in4. In this paper they gave a characterization of comultipli-
cation modules in terms of completely irreducible submodules. 
They also proved that if R is local ring then every comultiplica- 
tion module is cocyclic. Further they proved that a finitely 
generated second submodule of a comultiplication module is 
multiplication module. It was also shown that every non zero 
comultiplication module contains a minimal submodule and a 
characterization of minimal submodules was also given.

In the same year, Ansari and Farshadifar6 further extended 
their work and proved that, over a Noetherian ring, an injective 
multiplication modules is comultiplication. They also proved 
the dual notion of Nakayama’s lemma for finitely cogenerated 
modules.

In 2009, Atani and Atani2 studied the comultilication mod-
ules over Dedekind domains and pullback of local Dedekind 
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domains. They characterized the comultiplication modules over 
Dedekind domains with the help of localization. They com-
pletely described the indecomposable comultiplication modules 
over pullback of local Dedekind domains. This description was 
given in two stages. In the first stage they described the separated 
indecomposable comultiplication module and proved that if M 
is any separated indecomposable comultiplication module over a 
pull- back ring R of local Dedekind domains R1 & R2 , then M is 
isomorphic to one of the following modules:

(1)	M = (E(R1/m1) → (0) ← (0)), ((0) → (0) ← E(R2 /m2)), where 
E(Ri/mi) is the Ri-injective hull of Ri/mi for all i = 1, 2.

(2)	M = (R1 /m
n
1 → R̄ ← R2/m

m
2).

In second stage they explained the non-separated indecom-
posable comultiplication module.

In 2011, Yousef Al-Shaniafi and Patrick F. Smith12 studied 
the localization of comultiplication modules over a general 
ring R and proved that if every maximal ideal m of R is good 
for M then M is comultiplication R-module if and only if Mm 
is a comultiplication Rm-module for every maximal ideal m 
of R. It was also shown that if an R-module M = ⊕

i∈I
 Ui is the 

direct sum of simple submodules {Ui}i∈I for some index set I , 
then M is comultiplication module if and only if ∩j≠iannR (Uj) 
⊄ annR (Ui) for all i∈I . Further, they had shown that, under 
certain circumstances, quasi-injective modules and comulti-
plication module are related. They proved that if R is any ring 
and if M is a Noetherian quasi-injective R-module, then M is 
comultiplication module if and only if Rx = (0 :M annR (Rx)) 
for all x∈M.

In the same year Ansari and Fashadifar8,5 continued their 
work done in4,7,6. In8, they proved that if every proper submodule 
N of a module M is comultiplication module and if AnnR (N) ≠ 
AnnR (M), then M is a comultiplication module. In5, they proved 
that every second submodule of a Noetherian comultiplication 
module is simple submodule.
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In 2012, Al-Shaniafi and Smith9 explained the minimal com-
pletely irreducible submodules, unique complements and Goldie 
dimensions of comultiplication modules. In9, they proved that 
every comultiplication module has unique complement and if 
R is semilocal ring with n distinct maximal ideals, then every 
comultiplication mod- ule has Goldie dimension at most n. They 
also extended some results of Quasi-injective module and proved 
that every Noetherian comultiplication R-module is an Artinian 
quasi- injective R-module. In the same year, Tuganbaev1 studied 
the comultiplication modules over non-commutative rings.

2. � Characterization of 
Comultiplication Modules

Proposition 2.1. [12, Proposition 1.3] Let R be a ring and let M 
be an R-module. Then M is comultiplication module if and only 
if for every submodule N of M such that M/N is cocyclic, there 
exists an ideal I of R such that N = annM (I).

Proof. If M is comultiplication R-module then for every sub-
module N of M there exists an ideal I of R such that N = annM (I) 
and hence the result follows.

Conversely, suppose that there exists an ideal I of R such that 
N = annM (I) for any submodule N of M with M/N is cocyclic.

Let L be any proper submodule of M . Then by [10, pp 2], there 
exists {Lj}j∈J of completely irreducible submodules of M such that 
L = ∩j∈J Lj and the module M/Li is cocyclic for all i ∈ ∆.

Now, by assumption, for every i ∈ ∆, there exists an ideal Ji of 
R such that Li = annM (Ji).

Therefore,

where K = ∑
i∈∆

Ji, is an ideal of R.
Hence M is a comultiplication module.
Theorem 2.2. [12, Theorem 1.5] For any R-module M , the fol-

lowing are equivalent.

(1)	� M is a comultiplication module.
(2)	� N = (0 :M annR (N)) for every submodule N of M .
(3)	� The module (0 :M annR (N))/N has zero socle for every sub-

module N of M .
(4)	� Given submodule P , L of M , annR (P) ⊆ annR (L) implies 

that L ⊆ P .
(5)	� Given any submodule N of M and x ∈ M, annR (N) ⊆ annR 

(Rx) implies that x ∈ N .
(6)	� Given any submodule N of M and x ∈ M , annR (N) ⊆ annR 

(Rx) implies that (N :R x) is not a maximal ideal of R.
(7)	� (L :R N) = (annR (N) :R annR (L)) for all submodules L and N 

of M .
(8)	� M is strongly self-cogenerated.

Proof. (1)⇔(2)
Let M be a comultiplication module, then for any submod-

ule N of M , there exists an ideal I of R such that N = annM (I). 
This implies that I .N = 0. Therefore, I ⊆ annR (N), implies that 
(0 :M annR (N)) ⊆ annM (I) = N . Obviously we always have N ⊆ 
(0 :M annR (N)). Therefore,

N = (0 :M annR (N)).

Conversely, let M is an R-module and N is a submodule of M. 
Now, annR (N) is an ideal of R and N = (0 :M annR (N)). Hence by 
definition, M is a comultiplication module.

(2)⇔(3)
(2)⇒(3) is quit obvious. We only need to prove the con-

verse. So, suppose that for every submodule N of M , the module 
(0  :M annR (N))/N has zero socle. If possible, suppose that  
N = (0 :M annR (N)) for some submodule N of M . Then by [12, 
Lemma 1.4], there exists a submodule P containing N such that 
(0 :M annR (P))/P has non zero socle. But this contradicts our ini-
tial assumption. Therefore, N = (0 :M annR (N)). 

(2)⇒(4)
Let N = (0 :M annR (N)) for all submodule N of M . Let P and L 

be submodule of M such that annR (P) ⊆ annR (L). Let x ∈ L. This 
implies that x ∈ (0 :M annR (L)) implies that annR (L).x = 0. Hence 
annR (L) ⊆ annR (Rx), that is, annR (P) ⊆ annR (L) ⊆ annR (Rx). 
This implies that Rx = (0 :M annR (Rx)) ⊆ (0 :M annR (P)), that is, 
x ∈ P . Therefore, L ⊆ P .

(4)⇒ (5) is obvious. (5) ⇒ (6)
Suppose for any submodule N of M , and x ∈ M such that if 

annR (N) ⊆ annR (x), then x ∈ N . Therefore, (N :R x) = R.
(6)⇒ (2)
Suppose (6) holds. Let N be any submodule of M such that 

for any x ∈ M , annR (N) ⊆ annR (Rx). By hypothesis, (N :R x) is 
not a maximal ideal of R. If possible, suppose, there is a submod-
ule L such that

L ≠ (0 :M annR (L)).

Note that L ⊂ (0 :M (0 :R L)). Since L = (0 :M (0 :R L)), choose 
x ∈ (0 :M (0 :R L)) such that x ∉ L. This implies that annR (L) ⊆ 
annR (Rx).

Let F be the family of all submodules x of M containing N 
such that annR (X) ⊆ annR (Rx) and x ∉ X . Then F is non-empty 
implies that L ∈ F. Now suppose {Xi| i∈∆, where ∆ is an index 
set} be any chain in F. Put X = ∪i∈∆ Xi. Then x is a submodule of 
M containing L such that

annR (X) ⊆ annR (Xi) ⊆ annR (Rx) for all i ∈ ∆.

Thus x ∈ F and is an upper bound of {Xi| i ∈ ∆}. Therefore by 
Zorn’s lemma F admits a maximal element. Let P be any maximal 
element of F. As L ⊆ P , we have annR (P) ⊆ annR (L) and hence

(0 :M annR (L)) ⊆ (0 :M annR (P)).

L L ann J ann J ann Ki i i M i M i M
i

= ∩ =∩ ( ) =















= ( )

∈∆ ∈∆

∈∆

∑
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Therefore, x ∈ (0 :M annR (P)) and x ∉ P . Since (P :R Rx) is a 
proper ideal of R, choose a ∈ R such that a ∉ (P :R Rx), that is, ax 
∉ P . Therefore, we conclude that P + Rax ∉ F. Also as

annR (P + Rax) ⊆ annR (P) ⊆ annR (Rx),
we have x ∈ P +Rax, that is, x = y +bax for some y ∈ P, b ∈ 

R, implies that (1−ba)x = y. This implies that 1 − ba ∈ (P :R Rx). 
Therefore, (P :R Rx) is a maximal ideal of R. But this contradicts 
our initial hypothesis. Hence N = (0 :M (0 :R N)) for every sub-
module N of M .

(2)⇒(7)
Suppose (2) holds. Let L be any submodule of M and let I = 

annR (L). Note that r ∈ (L :R N) if and only if rN ⊆ L = (0 :M annR 
(L)) = annM (I), that is, rIN = 0 if and only if rI ⊆ annR (N), that 
is, r ∈ ((0 :R N) :R annR (L)). Therefore,

(L :R N) = (annR (N) :R annR (L)).
(7)⇒(4)
Suppose (7) holds. Let P and L be submodules of M such that 

annR (P) ⊆ annR (L). By hypothesis, (P :R L) = (annR (L) :R annR 
(P)) = R. Therefore, L ⊆ P .

Since equivalence of (4) and (2) is already established, we 
have, (7)⇒(2).

(1)⇒(8)
Suppose M is a comultiplication module and N be any 

submodule of M. Then, there exists an ideal I of R such that  
N = annM (I). Now, for every a ∈ I , define a trivial endomor-
phism ϕa : M → M by ϕa (x) = ax for all x ∈ M . Obviously, we have  
N = ∩a∈I ker ϕa. Therefore, M is strongly self-cogenerated module.

(8)⇒ (1)
Suppose (8) holds. Let L be any submodule of M . By hypoth-

esis, there exists an index set J and trivial endomorphisms {θj}j∈J 
on M such that L = ∩j∈J ker θj . Since every endomorphism θj is 
trivial. Hence for every j ∈ J , there exists aj ∈ R such that

θj (x) = aj x for all x ∈ M.

Suppose that I = ∑
j∈J

 Raj. Then
x ∈ annM (I) ⇔ x ∈ ∩j∈J annM (Raj) = ∩j∈J ker θj = L.
Therefore, L = annM (I) and hence, M is a comultiplication 

module.

3. � Properties of Comultiplication 
Modules

Proposition 3.1. [7, Proposition 3.1] The following results hold for 
a comultiplication R-module M .
(1)	� If J is an ideal of R such that annM (J) = (0), then J M = M .
(2)	� If J is an ideal of R such that annM (J) = (0), then for every 

element x ∈ M, there exists an element a of J such that x = ax. 
In particular Rx = J x for all x ∈ M .

(3)	� If M is a finitely generated R-module and J is an ideal of R 
such that annM (J) = (0), then there exists a ∈ J such that 1 − a 
∈ annR (M).

Proof. (1) Let N be any submodule of M . Then there exists an 
ideal I of R such that N = annM (I).

Let x ∈ (annM (I) :M J).
⇔ J x ⊆ annM (I)
⇔ I J x = (0)
⇔ I x ⊆ annM (J) = (0)
⇔ x ∈ annM (I).

Therefore, annM (I) = (annM (I) :M J) and hence N = (N :M J).
Put N = J M . Therefore,
J M = (J M :M J) = M.
(2) Suppose that x ∈ M . Then Rx is a submodule of M. As 

annM (J) = (0), we have annRx (J) = (0). By [12, Lemma 2.1], Rx is 
comultiplication R-module. Therefore, Rx = Jx, by (1) and hence 
result follows. This implies that 1x = ax for some a ∈ J .

(3) Let J be an ideal of R such that annM (J) = (0). Then by (1), 
J M = M . Now, since M is finitely generated R module and J M 
= M , hence by Nakayama Lemma, we have 1 − a ∈ annR (M) for 
some a ∈ J .
Theorem 3.2. [7, Theorem 3.4] Let M be a faithful comultiplica-
tion R-module.

(1)	� If M is finitely generated module then annM (I) = (0), for 
every proper ideal I of R.

(2)	� If annM (m) ≠ (0), for every maximal ideal of R then M is 
finitely cogenerated.

Proof. (1) Let N be finitely generated submodule of M . If 
possible, suppose that I is a proper ideal of R such that annM (I) 
= (0). Since I is a proper ideal, I ⊆ m, for some maximal ideal 
m of R. This implies that annM (m) ⊆ annM (I) = (0). Hence by 
Proposition 3.1(3), 1 − a ∈ annR (M), for some a ∈ m. Since M 
is faithful, we have annR (M) = (0). This implies that a = 1 ∈ m, 
which is a contradiction. Hence annM (I) = (0) for any proper 
ideal I of R.

(3) Let annM (m) = (0) for every maximal ideal m of R. Let 
{Mλ}λ∈Λ be a collection of submodules of M such that ∩λ∈ΛMλ = 
(0). Since Mλ is a submodule of M , for every λ ∈ Λ, there exists 
an ideal Iλ of R such that Mλ = annM (Iλ). Now,

(0) = ∩λ∈ΛMλ = ∩λ∈ΛannM (Iλ) = annM (∑
λ∈Λ

Iλ).
Note that ∑

λ∈Λ
 Iλ is an ideal of R. We assert that ∑

λ∈Λ
 Iλ = R. If 

possible, suppose that ∑
λ∈Λ

Iλ ≠ R. Then ∑
λ∈Λ

Iλ ⊆ m for some maximal 
ideal m of R. But this implies that annM (m) ⊆ annM ( P Iλ) = (0), 
which is a contradiction. Therefore, ∑

λ∈Λ
 Iλ = R. Since 1 ∈ R, there 

exists a finite subset Λ1 of Λ such that 1 = ∑
λ∈Λ1

rλ, where rλ ∈ Iλ. 
Therefore, R = ∑

λ∈Λ1
Iλ.
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Now, annM (R) = (0). This implies that annM ( ∑
λ∈Λ1

Iλ) = (0),

that is, ∩λ∈Λ1 annM (Iλ) = (0), that is, ∩λ∈Λ1 Mλ = (0). Hence M is 
finitely cogenerated. 
Example 3.3. [7, Example 3.8] Let n be a fixed positive integer. 
Then

(1)	� Zn is a comultiplication Z-module. 
(2)	� Zn is a comultiplication Zn-module.

Proof. We prove only (1). The proof of (2) is same as that  
of (1).

Let N be a submodule of Zn. Let o(N) = d. Then n = md for 
some positive integer m. This implies that N = mZn. Put I = dZ. 
Then dZ is an ideal in Z such that

N = annZn (dZ).

Therefore, Zn is a comultiplication Z-module.

4. � Quasi-injective Comultiplication 
Modules

Theorem 4.1. [12, Theorem 4.4] Let R be any ring and let M be a 
Noetherian R-module such that

(1)	� Rx = (0 :M annR (Rx)) for all x ∈ M and
(2)	� annR (N ∩ P) = annR (N) + annR (P) for all submodules N and 

P of M .
Then M is quasi injective.
Proof. Let M be Noetherian R-module such that (1) and (2) 

holds. Since M is Noetherian module, every submodule of M is 
finitely generated. Now,

Rx = (0 :M annR (Rx)) for all x ∈ M

and let N and P are finitely generated submodules of M such 
that

annR (N ∩ P) = annR (N) + annR (P).

Let β : L → M be an R-homomorphism. Then by [12, Lemma 
4.3], there exists r ∈ R such that

β(x) = rx for all x ∈ L.
Therefore, β can be lifted to M , naturally by defining β(x) = 

rx for all x ∈ M . Hence M is quasi-injective module.
Proposition 4.2. [9, Corollary 3.12] Every Noetherian comul-

tiplication R-module is an Artinian quasi-injective R-module.
Proof. Let L be any submodule of M. Then by [11, Proposition 

6.2], L is finitely gener- ated. Also, as M is comultiplication 
module, by [9, Corollary 3.11], every homomorphism ϕ : L → 
M is trivial. Hence, ϕ : L → M can be lifted to M . Therefore, M 
is M-injective and hence quasi-injective. Now, by [12, Corollary 
2.11], M is Artinian. Therefore, M is Artinian quasi-injective 
module. 

5. � Comultiplication Module over 
Dedekind Domain

Lemma 5.1. [2, Lemma 3.2] Let R be the pullback ring. Then the 
indecomposable separated comultiplication module over R are

(1)	� M = (E(R1/m1) → (0) ← (0)), ((0) → (0) ← E(R2/m2)), where 
E(Ri/mi) is the Ri-injective hull of Ri/mi for all i = 1, 2.

(2)	� M = (R1/m1
n → R̄ ← R2/m2

m).

Proof. Let R be the pullback ring and let M = (M1 → M̄ ← M2) 
be separated R-module. Then by [3, Lemma 2.8],

M = (E(Ri/mi) → (0) ← (0)), ((0) → (0) ← E(R2/m2)) and
M = (R1/m1

n → R̄ ← R2/m2
m)

are indecomposable. Now, by [2, Theorem 2.5],

R1/m1
n, R2/m2

m and E(R1/m1), E(R2/m2)

are comultiplication modules. This implies by [2, Propo-sition 
3.1],

M = (E(R1/m1) → (0) ← (0)), ((0) → (0) ← E(R2/m2)) and
M = (R1/m1

n → R̄ ← R2/m2
m)

are comultiplication R-modules. 
Lemma 5.2. [2, Lemma 2.4] Every non-zero comultiplication 

module over a discrete valuation domain R is indecomposable.
Proof. Let R be a discrete valuation domain with m = Rp, the 

unique maximal ideal generated by p. Let M be a comultiplica-
tion R-module such that M = N ⊕ P with submodules N ≠(0) and 
P ≠ (0). Since R is a discrete valuation domain, by [11, Corollary 
9.4], for any ideal I of R, there exists some positive integer n such 
that I = mn.

Now, M is a comultiplication R-module. By [11, Corollary 
9.4], there exists some positive integer m, n with m < n such that

N = annM (mn) and P = annM (mm).

This implies that

M = N ⊕ P
= annM (mn) + annM (mm)
= annM (mn).

Now, we have
N ∩ P = annM (mn) ∩ annM (mm) = annM (mn + mm) ≠ (0).
But this is a contradiction to the fact that N ∩ P = (0). Hence 

either N = (0) or P = (0).
Therefore, M is indecomposable. 
Theorem 5.3. [2, Theorem 3.4] Let R be a pullback ring and let 

M be an indecomposable separated comultiplication R-module. 
Then M is isomorphic to one of the modules listed in Lemma 
5.1.
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Proof. Since M is separated comultiplication R-module, by [2, 
Proposition 3.3], M = L ⊕ N , where L is one of the modules as 
described in (1) and N is one of the module described in (2) of 
Lemma 5.1. Now, M is indecomposable, either M = L or M = N.  

6.  Conclusion
In this paper we have tried to present the whole results. These 
results are backbone of comultiplication modules. This paper is 
very useful for mathematical society.
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